from akida.core import (Layer, LayerParams, LayerType)
[docs]class Stem(Layer):
"""Stem layer corresponding to the Stem block of Transformer models.
It's composed of the following layers:
- The Embedding layer
- The Reshape layer
- The ClassToken (+ DistToken for distilled model) layer(s)
- The AddPosEmbedding layer
This layer covers all the above layers operations.
Note that final output values will be saturated on the range that can
be represented with output_bits.
Args:
input_shape (tuple): the spatially square 3D input shape.
filters (int, optional): Positive integer, dimensionality of the output space.
Defaults to 192.
kernel_size (int, optional): kernel size. Defaults to 16.
output_bits (int, optional): output bitwidth. Defaults to 8.
buffer_bits (int, optional): buffer bitwidth. Defaults to 32.
post_op_buffer_bits (int, optional): internal bitwidth for post operations. Defaults to 32.
num_non_patch_tokens (int, optional): number of non patch tokens to concatenate
with the input along it last axis. Defaults to 0.
name (str, optional): name of the layer. Defaults to empty string.
"""
def __init__(self,
input_shape,
filters=192,
kernel_size=16,
output_bits=8,
buffer_bits=32,
post_op_buffer_bits=32,
num_non_patch_tokens=0,
name=""):
try:
params = LayerParams(
LayerType.Stem, {
"input_spatial_size": input_shape[0],
"input_channels": input_shape[2],
"filters": filters,
"kernel_size": kernel_size,
"output_bits": output_bits,
"buffer_bits": buffer_bits,
"post_op_buffer_bits": post_op_buffer_bits,
"num_non_patch_tokens": num_non_patch_tokens
})
# Call parent constructor to initialize C++ bindings
# Note that we invoke directly __init__ instead of using super, as
# specified in pybind documentation
Layer.__init__(self, params, name)
except BaseException:
self = None
raise