Akida, 2nd Generation
Overview
Installation
Supported configurations
Quick installation
Running examples
User guide
Akida user guide
Overview
Programming interface
The Akida Model
Akida layers
Model Hardware Mapping
Devices
Model mapping
Advanced Mapping Details and Hardware Devices Usage
Performance measurement
Using Akida Edge learning
Learning constraints
Compiling a layer
QuantizeML toolkit
Overview
The FixedPoint representation
Quantization flow
Compatibility constraints
Model loading
Command line interface
quantize CLI
config CLI
check CLI
insert_rescaling CLI
Supported layer types
Keras support
ONNX support
CNN2SNN toolkit
Overview
Conversion flow
Conversion compatibility
Command-line interface
Handling Akida 1.0 and Akida 2.0 specificities
Legacy quantization API
Typical quantization scenario
Design compatibility constraints
Command-line interface
Layers Considerations
Tips and Tricks
Akida models zoo
Overview
Command-line interface for model creation
Command-line interface for model training
KWS training
AkidaNet training
Command-line interface for model evaluation
Command-line interface to evaluate model MACS
Layer Blocks
Handling Akida 1.0 and Akida 2.0 specificities
Akida Engine
Overview
Engine directory structure
Engine API overview
HardwareDriver
HardwareDevice
Dense
Shape
HwVersion
Sparse and Input conversion functions
Other headers in the API
API reference
Akida runtime
Model
Layer
Layer
Mapping
Akida layers
Akida V1 layers
Akida V2 layers
Layer parameters
LayerType
Padding
PoolType
Optimizers
Sequence
Sequence
BackendType
Pass
Device
Device
HwVersion
HWDevice
HWDevice
SocDriver
ClockMode
PowerMeter
NP
Tools
Sparsity
CNN2SNN
Akida version
Conversion
Legacy quantization API
Utils
Calibration
Transforms
Constraint
Quantization
Quantizers
Quantized layers
QuantizeML
Layers
Reshaping
Activations
Attention
Normalization
Convolution
Depthwise convolution
Separable convolution
Dense
Skip connection
Pooling
Shiftmax
Transformers
Rescaling
Dropout
Quantizers
Calibration
Recording
Models
Transforms
Quantization
Quantization parameters
Calibration
Utils
Tensors
QTensor
FixedPoint
QFloat
ONNX support
Layers
Custom patterns
Akida models
Layer blocks
CNN blocks
Transformers blocks
Transposed blocks
Detection block
Helpers
Gamma constraint
Unfusing SeparableConvolutional
Extract samples
Knowledge distillation
MACS
Model I/O
Utils
Model zoo
AkidaNet
Mobilenet
DS-CNN
VGG
YOLO
PointNet++
GXNOR
CenterNet
AkidaUNet
Transformers
Examples
General examples
Global Akida workflow
1. Create and train
2. Quantize
3. Convert
4. GXNOR/MNIST
AkidaNet/ImageNet inference
1. Dataset preparation
2. Pretrained quantized model
3. Conversion to Akida
4. Hardware mapping and performance
DS-CNN/KWS inference
1. Load the preprocessed dataset
2. Load a pre-trained native Keras model
3. Load a pre-trained quantized Keras model
4. Conversion to Akida
5. Confusion matrix
Age estimation (regression) example
1. Load the UTKFace Dataset
2. Load a pre-trained native Keras model
3. Load a pre-trained quantized Keras model
4. Conversion to Akida
5. Estimate age on a single image
Transfer learning with AkidaNet for PlantVillage
Transfer learning process
1. Dataset preparation
2. Get a trained AkidaNet base model
3. Add a classification head to the model
4. Train for a few epochs
5. Quantize the model
6. Compute accuracy
YOLO/PASCAL-VOC detection tutorial
1. Introduction
2. Preprocessing tools
3. Model architecture
4. Training
5. Performance
6. Conversion to Akida
Segmentation tutorial
1. Load the dataset
2. Load a pre-trained native Keras model
3. Load a pre-trained quantized Keras model
4. Conversion to Akida
5. Segment a single image
Build Vision Transformers for Akida
1. Model selection
2. Model optimization for Akida hardware
3. Model Training
4. Model quantization
5. Conversion to Akida
6. Displaying results Attention Maps
PyTorch to Akida workflow
1. Create and train
2. Export
3. Quantize
4. Convert
Quantization
Advanced QuantizeML tutorial
1. Defining a quantization scheme
2. Calibration
Upgrading to Akida 2.0
1. Workflow differences
2. Models architecture differences
3. Using
AkidaVersion
Off-the-shelf models quantization
1. Workflow overview
2. Data preparation
3. Download and export
4. Quantize
Advanced ONNX models quantization
1. Get model and data
2. Quantize
3. Conversion
Edge examples
Akida vision edge learning
1. Dataset preparation
2. Prepare Akida model for learning
3. Edge learning with Akida
Akida edge learning for keyword spotting
1. Edge learning process
2. Dataset preparation
3. Prepare Akida model for learning
4. Learn with Akida using the training set
5. Edge learning
Tips to set Akida edge learning parameters
1. Akida learning parameters
2. Create Akida model
3. Estimate the required number of weights of the trainable layer
4. Estimate the number of neurons per class
[Deprecated] CNN2SNN tutorials
Advanced CNN2SNN tutorial
1. Design a CNN2SNN quantized model
2. Weight Quantizer Details
3. Understanding quantized activation
4. How to deal with too high scale factors
Model zoo performance
Akida 1.0 models
Image domain
Classification
Object detection
Regression
Face recognition
Audio domain
Keyword spotting
Point cloud
Classification
Akida 2.0 models
Image domain
Classification
Object detection
Regression
Face recognition
Segmentation
Audio domain
Keyword spotting
Classification
Point cloud
Classification
Changelog
Support
License
Akida Examples
Index
Index
_
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
|
Y
_
__version__ (in module akida)
A
abs() (quantizeml.tensors.FixedPoint method)
ActivationDiscreteRelu (class in cnn2snn)
adaround() (in module cnn2snn.calibration)
Add (class in akida)
(class in quantizeml.layers)
add() (akida.Model method)
add_classes() (akida.Model method)
add_gamma_constraint() (in module akida_models.gamma_constraint)
AddPositionEmbs (class in quantizeml.layers)
AKD1000() (in module akida)
akida
module
akida_models
module
akida_unet_portrait128() (in module akida_models)
akida_unet_portrait128_pretrained() (in module akida_models)
akidanet18_imagenet() (in module akida_models)
akidanet18_imagenet_pretrained() (in module akida_models)
akidanet_edge_imagenet() (in module akida_models)
akidanet_edge_imagenet_pretrained() (in module akida_models)
akidanet_faceidentification_edge_pretrained() (in module akida_models)
akidanet_faceidentification_pretrained() (in module akida_models)
akidanet_imagenet() (in module akida_models)
akidanet_imagenet_pretrained() (in module akida_models)
akidanet_plantvillage_pretrained() (in module akida_models)
akidanet_vww_pretrained() (in module akida_models)
AkidaUnsupervised (class in akida)
AkidaVersion (class in cnn2snn)
AkidaVersion.v1 (in module cnn2snn.AkidaVersion)
AkidaVersion.v2 (in module cnn2snn.AkidaVersion)
align() (quantizeml.tensors.FixedPoint method)
align_rescaling() (in module quantizeml.models.transforms)
AlignedWeightQuantizer (class in quantizeml.layers)
apply_weights_to_model() (in module quantizeml.models)
assert_per_tensor() (quantizeml.tensors.QTensor method)
Attention (class in akida)
(class in quantizeml.layers)
AudioProcessor (class in akida_models.kws.preprocessing)
augment_sample() (in module akida_models.detection.data_augmentation)
B
backend (akida.Sequence property)
BackendType (class in akida)
BatchNormalization (class in akida)
bc_deit_dist_ti16_imagenet_pretrained() (in module akida_models)
bc_deit_ti16() (in module akida_models)
bc_vit_ti16() (in module akida_models)
bc_vit_ti16_imagenet_pretrained() (in module akida_models)
bias_correction() (in module cnn2snn.calibration)
bitwidth (cnn2snn.quantization_ops.WeightQuantizer property)
(cnn2snn.QuantizedActivation property)
BoundingBox (class in akida_models.detection.processing)
build() (quantizeml.layers.OutputQuantizer method)
(quantizeml.layers.WeightQuantizer method)
build_centernet_aug_pipeline() (in module akida_models.centernet.centernet_utils)
build_yolo_aug_pipeline() (in module akida_models.detection.data_augmentation)
C
calibrate() (in module quantizeml.models)
calibration_required() (in module quantizeml.models)
call() (cnn2snn.QuantizedActivation method)
(cnn2snn.QuantizedConv2D method)
(cnn2snn.QuantizedDense method)
(cnn2snn.QuantizedSeparableConv2D method)
(quantizeml.layers.AlignedWeightQuantizer method)
(quantizeml.layers.Dequantizer method)
(quantizeml.layers.OutputQuantizer method)
(quantizeml.layers.WeightQuantizer method)
centernet_base() (in module akida_models)
centernet_voc_pretrained() (in module akida_models)
CenternetLoss (class in akida_models.centernet.centernet_loss)
check_model_compatibility() (in module cnn2snn)
(in module cnn2snn.compatibility_checks)
check_quantization() (in module quantizeml.models)
ClassToken (class in quantizeml.layers)
clock_mode (akida.core.SocDriver property)
ClockMode (class in akida.core.soc)
clone() (quantizeml.tensors.QTensor method)
cnn2snn
module
col (akida.NP.Ident property)
compile() (akida.Model method)
compute_center_wh() (in module akida_models.detection.box_utils)
compute_center_xy() (in module akida_models.detection.box_utils)
compute_overlap() (in module akida_models.detection.box_utils)
Concatenate (class in akida)
Conv2D (class in akida)
Conv2DTranspose (class in akida)
conv_block() (in module akida_models.layer_blocks)
conv_transpose_block() (in module akida_models.layer_blocks)
convert() (in module cnn2snn)
Convolutional (class in akida)
Coord (class in akida_models.detection.data_utils)
create_centernet_targets() (in module akida_models.centernet.centernet_utils)
create_yolo_targets() (in module akida_models.detection.processing)
current (akida.PowerEvent property)
custom_pattern_scope() (in module quantizeml.onnx_support.quantization)
D
decode_output() (in module akida_models.centernet.centernet_processing)
(in module akida_models.detection.processing)
deit_b16() (in module akida_models)
deit_imagenet() (in module akida_models)
deit_s16() (in module akida_models)
deit_ti16() (in module akida_models)
DeitDistiller (class in akida_models.distiller)
Dense1D (class in akida)
Dense2D (class in akida)
dense_block() (in module akida_models.layer_blocks)
DepthwiseConv2D (class in akida)
DepthwiseConv2DTranspose (class in akida)
(class in quantizeml.layers)
Dequantizer (class in akida)
(class in quantizeml.layers)
Dequantizer() (in module quantizeml.onnx_support.layers)
desc (akida.Device property)
Device (class in akida)
devices() (in module akida)
display_macs() (in module akida_models.macs)
Distiller (class in akida_models.distiller)
dma_conf (akida.NP.Mesh property)
dma_event (akida.NP.Mesh property)
downscale() (quantizeml.tensors.FixedPoint method)
ds_cnn_kws() (in module akida_models)
ds_cnn_kws_pretrained() (in module akida_models)
dump_config() (in module quantizeml.models)
E
evaluate() (akida.Model method)
evaluate_map() (akida_models.detection.map_evaluation.MapEvaluation method)
evaluate_sparsity() (in module akida)
events() (akida.PowerMeter method)
expand() (quantizeml.tensors.FixedPoint method)
extract_samples() (in module akida_models.extract)
ExtractToken (class in akida)
(class in quantizeml.layers)
F
fetch_file() (in module akida_models.utils)
filters (akida.NP.Mapping property)
fit() (akida.HardwareDevice method)
(akida.Model method)
FixedPoint (class in quantizeml.tensors)
FixedPointRecorder (class in quantizeml.layers)
floor (akida.PowerMeter property)
floor() (quantizeml.tensors.FixedPoint method)
fold_batchnorm() (in module cnn2snn.transforms)
fold_batchnorms() (in module quantizeml.models.transforms)
forward() (akida.HardwareDevice method)
(akida.Model method)
from_dict() (akida.Model static method)
from_json() (akida.Model static method)
FullyConnected (class in akida)
G
generate_anchors() (in module akida_models.detection.generate_anchors)
get() (akida.core.Optimizer method)
get_akida_version() (in module cnn2snn)
get_augmented_data_for_wav() (akida_models.kws.preprocessing.AudioProcessor method)
get_coco_dataset() (in module akida_models.detection.coco.data)
get_config() (cnn2snn.quantization_ops.WeightQuantizer method)
(cnn2snn.QuantizedActivation method)
(cnn2snn.QuantizedConv2D method)
(cnn2snn.QuantizedDense method)
(cnn2snn.QuantizedReLU method)
(cnn2snn.QuantizedSeparableConv2D method)
(cnn2snn.StdWeightQuantizer method)
(quantizeml.layers.OutputQuantizer method)
(quantizeml.layers.WeightQuantizer method)
get_data() (akida_models.kws.preprocessing.AudioProcessor method)
get_dataset_length() (in module akida_models.detection.data_utils)
get_detection_datasets() (in module akida_models.detection.data)
get_features_for_wav() (akida_models.kws.preprocessing.AudioProcessor method)
get_flops() (in module akida_models.macs)
get_label() (akida_models.detection.processing.BoundingBox method)
get_layer() (akida.Model method)
get_layer_count() (akida.Model method)
get_learning_histogram() (akida.Layer method)
get_model_path() (in module akida_models.model_io)
get_modelnet() (in module akida_models.modelnet40.preprocessing)
get_modelnet_from_file() (in module akida_models.modelnet40.preprocessing)
get_params_by_version() (in module akida_models.utils)
get_preprocessed_samples() (in module akida_models.imagenet)
get_quantization_params() (in module quantizeml.models)
get_score() (akida_models.detection.processing.BoundingBox method)
get_tensorboard_callback() (in module akida_models.utils)
get_variable() (akida.Layer method)
get_variable_names() (akida.Layer method)
get_voc_dataset() (in module akida_models.detection.voc.data)
get_widerface_dataset() (in module akida_models.detection.widerface.data)
gxnor_mnist() (in module akida_models)
gxnor_mnist_pretrained() (in module akida_models)
H
HardwareDevice (class in akida)
HwVersion (class in akida)
I
id (akida.NP.Ident property)
ident (akida.NP.Info property)
(akida.NP.Mapping property)
Ident (class in akida.NP)
inbounds (akida.Layer property)
index_to_label() (in module akida_models.imagenet.preprocessing)
inference_power_events (akida.HardwareDevice property)
Info (class in akida.NP)
init_random_vars() (in module akida_models.detection.data_augmentation)
input_bits (akida.Layer property)
input_dims (akida.Layer property)
input_shape (akida.Model property)
InputConv2D (class in akida)
InputConvolutional (class in akida)
InputData (class in akida)
InputQuantizer() (in module quantizeml.onnx_support.layers)
insert_layer() (in module quantizeml.models.transforms)
insert_rescaling() (in module quantizeml.models.transforms)
invert_batchnorm_pooling() (in module cnn2snn.transforms)
(in module quantizeml.models.transforms)
invert_relu_maxpool() (in module quantizeml.models.transforms)
iou() (akida_models.detection.processing.BoundingBox method)
ip_version (akida.Model property)
K
KLDistillationLoss() (in module akida_models.distiller)
L
Layer (class in akida)
LayerMadNormalization (class in quantizeml.layers)
layers (akida.Model property)
(akida.Pass property)
LayerType (class in akida)
learn_enabled (akida.HardwareDevice property)
learn_mem (akida.HardwareDevice property)
learning (akida.Model property)
LinearWeightQuantizer (class in cnn2snn.quantization_ops)
load_data() (in module akida_models.utk_face.preprocessing)
load_image() (in module akida_models.detection.processing)
load_model() (in module akida_models.model_io)
(in module quantizeml.models)
load_quantized_model() (in module cnn2snn)
load_weights() (in module akida_models.model_io)
M
MadNorm (class in akida)
major_rev (akida.HwVersion property)
map() (akida.Model method)
MapEvaluation (class in akida_models.detection.map_evaluation)
mapping (akida.Layer property)
Mapping (class in akida.Layer)
(class in akida.NP)
max_frac_bits() (quantizeml.tensors.FixedPoint static method)
(quantizeml.tensors.QFloat static method)
max_range_() (cnn2snn.MaxPerAxisQuantizer method)
(cnn2snn.MaxQuantizer static method)
MaxPerAxisQuantizer (class in cnn2snn)
MaxQuantizer (class in cnn2snn)
maybe_download_and_extract_dataset() (akida_models.kws.preprocessing.AudioProcessor static method)
memory (akida.HardwareDevice property)
mesh (akida.Device property)
Mesh (class in akida.NP)
metrics (akida.HardwareDevice property)
(akida.Model property)
minor_rev (akida.HwVersion property)
MinValueConstraint (class in cnn2snn.min_value_constraint)
mlp_block() (in module akida_models.layer_blocks)
mobilenet_imagenet() (in module akida_models)
mobilenet_imagenet_pretrained() (in module akida_models)
Model (class in akida)
module
akida
akida_models
cnn2snn
quantizeml
multi_head_attention() (in module akida_models.layer_blocks)
N
name (akida.Layer property)
(akida.Sequence property)
(quantizeml.tensors.FixedPoint property)
(quantizeml.tensors.QFloat property)
(quantizeml.tensors.QTensor property)
NonTrackFixedPointVariable (class in quantizeml.layers)
NonTrackVariable (class in quantizeml.layers)
normalize_separable_layer() (in module cnn2snn.transforms)
normalize_separable_model() (in module cnn2snn.transforms)
nps (akida.Layer.Mapping property)
(akida.NP.Mesh property)
O
on_epoch_end() (akida_models.detection.map_evaluation.MapEvaluation method)
OnnxLayer() (in module quantizeml.onnx_support.layers)
optimal_scales() (quantizeml.tensors.QFloat static method)
Optimizer (class in akida.core)
output_dims (akida.Layer property)
output_shape (akida.Model property)
output_signed (akida.Layer property)
OutputObserver (class in quantizeml.layers)
OutputQuantizer (class in quantizeml.layers)
P
PaddedConv2D (class in quantizeml.layers)
Padding (class in akida)
parameters (akida.Layer property)
Pass (class in akida)
passes (akida.Sequence property)
per_tensor (quantizeml.tensors.FixedPoint property)
(quantizeml.tensors.QFloat property)
(quantizeml.tensors.QTensor property)
pointnet_plus_modelnet40() (in module akida_models)
pointnet_plus_modelnet40_pretrained() (in module akida_models)
PoolType (class in akida)
pop_layer() (akida.Model method)
power (akida.PowerEvent property)
power_events (akida.Model property)
power_measurement_enabled (akida.core.SocDriver property)
power_meter (akida.core.SocDriver property)
PowerEvent (class in akida)
PowerMeter (class in akida)
predict() (akida.HardwareDevice method)
(akida.Model method)
predict_classes() (akida.Model method)
prepare_background_data() (akida_models.kws.preprocessing.AudioProcessor method)
prepare_data_index() (akida_models.kws.preprocessing.AudioProcessor method)
prepare_processing_graph() (akida_models.kws.preprocessing.AudioProcessor method)
preprocess_dataset() (in module akida_models.detection.preprocess_data)
preprocess_image() (in module akida_models.detection.processing)
(in module akida_models.imagenet.preprocessing)
product_id (akida.HwVersion property)
program (akida.HardwareDevice property)
(akida.Sequence property)
program_external() (akida.HardwareDevice method)
program_parts (akida.Sequence property)
promote() (quantizeml.tensors.FixedPoint method)
(quantizeml.tensors.QFloat method)
Q
QFloat (class in quantizeml.tensors)
QFloatRecorder (class in quantizeml.layers)
QTensor (class in quantizeml.tensors)
quantization() (in module quantizeml.models)
QuantizationParams (class in quantizeml.models)
QuantizationSampler() (in module cnn2snn.calibration)
quantize() (cnn2snn.quantization_ops.LinearWeightQuantizer method)
(cnn2snn.quantization_ops.WeightQuantizer method)
(in module cnn2snn)
(in module quantizeml.models)
(quantizeml.tensors.FixedPoint static method)
(quantizeml.tensors.QFloat static method)
quantize_layer() (in module cnn2snn)
quantize_scales() (quantizeml.tensors.QFloat static method)
quantized_activation() (cnn2snn.QuantizedActivation method)
QuantizedActivation (class in cnn2snn)
QuantizedAdd (class in quantizeml.layers)
QuantizedAdd() (in module quantizeml.onnx_support.layers)
QuantizedAddPositionEmbs (class in quantizeml.layers)
QuantizedAttention (class in quantizeml.layers)
QuantizedBatchNormalization (class in quantizeml.layers)
QuantizedClassToken (class in quantizeml.layers)
QuantizedConcatenate (class in quantizeml.layers)
QuantizedConv2D (class in cnn2snn)
(class in quantizeml.layers)
QuantizedConv2D() (in module quantizeml.onnx_support.layers)
QuantizedConv2DTranspose (class in quantizeml.layers)
QuantizedDense (class in cnn2snn)
(class in quantizeml.layers)
QuantizedDense1D() (in module quantizeml.onnx_support.layers)
QuantizedDepthwise2D() (in module quantizeml.onnx_support.layers)
QuantizedDepthwiseConv2D (class in quantizeml.layers)
QuantizedDepthwiseConv2DTranspose (class in quantizeml.layers)
QuantizedDropout (class in quantizeml.layers)
QuantizedExtractToken (class in quantizeml.layers)
QuantizedFlatten (class in quantizeml.layers)
QuantizedGlobalAveragePooling2D (class in quantizeml.layers)
QuantizedLayerNormalization (class in quantizeml.layers)
QuantizedMaxPool2D (class in quantizeml.layers)
QuantizedPermute (class in quantizeml.layers)
QuantizedReLU (class in cnn2snn)
(class in quantizeml.layers)
QuantizedRescaling (class in quantizeml.layers)
QuantizedReshape (class in quantizeml.layers)
QuantizedSeparableConv2D (class in cnn2snn)
(class in quantizeml.layers)
QuantizedShiftmax (class in quantizeml.layers)
quantizeml
module
Quantizer (class in quantizeml.layers)
R
record_quantization_variables() (in module quantizeml.models)
recording() (in module quantizeml.layers)
remove_empty_objects() (in module akida_models.detection.data_utils)
remove_zeropadding2d() (in module quantizeml.models.transforms)
replace_lambda() (in module quantizeml.models.transforms)
rescale() (quantizeml.tensors.FixedPoint method)
reset_top_memory() (akida.HardwareDevice method)
reshape() (in module cnn2snn.transforms)
resize_image() (in module akida_models.detection.data_augmentation)
row (akida.NP.Ident property)
S
sanitize() (in module quantizeml.models.transforms)
save() (akida.Model method)
save_weights() (in module akida_models.model_io)
scale_factor() (cnn2snn.MaxQuantizer method)
(cnn2snn.quantization_ops.LinearWeightQuantizer method)
(cnn2snn.quantization_ops.WeightQuantizer method)
(cnn2snn.StdWeightQuantizer method)
separable_conv_block() (in module akida_models.layer_blocks)
SeparableConvolutional (class in akida)
sepconv_transpose_block() (in module akida_models.layer_blocks)
Sequence (class in akida)
sequences (akida.Model property)
sequentialize() (in module cnn2snn.transforms)
set_akida_version() (in module cnn2snn)
set_variable() (akida.Layer method)
shift() (quantizeml.tensors.FixedPoint method)
Shiftmax (class in akida)
(class in quantizeml.layers)
shiftmax() (in module quantizeml.layers)
sigma_() (cnn2snn.StdPerAxisQuantizer method)
(cnn2snn.StdWeightQuantizer static method)
sign (quantizeml.tensors.FixedPoint property)
single_buffer (akida.NP.Mapping property)
soc (akida.HardwareDevice property)
SocDriver (class in akida.core)
Spec (quantizeml.tensors.FixedPoint attribute)
(quantizeml.tensors.QFloat attribute)
(quantizeml.tensors.QTensor attribute)
statistics (akida.Model property)
(in module akida)
StdPerAxisQuantizer (class in cnn2snn)
StdWeightQuantizer (class in cnn2snn)
Stem (class in akida)
step (cnn2snn.ActivationDiscreteRelu property)
(cnn2snn.QuantizedActivation property)
(cnn2snn.QuantizedReLU property)
string_to_softmax() (in module quantizeml.layers)
summary() (akida.Model method)
syncretize() (in module cnn2snn.transforms)
T
TensorRecorder (class in quantizeml.layers)
threshold (cnn2snn.QuantizedActivation property)
(cnn2snn.StdWeightQuantizer property)
to_buffer() (akida.Model method)
to_dict() (akida.Layer method)
(akida.Model method)
to_fixed_point() (quantizeml.tensors.QFloat method)
to_float() (quantizeml.tensors.FixedPoint method)
(quantizeml.tensors.QFloat method)
(quantizeml.tensors.QTensor method)
to_json() (akida.Model method)
transformer_block() (in module akida_models.layer_blocks)
ts (akida.PowerEvent property)
TwoNodesIP() (in module akida)
type (akida.NP.Mapping property)
Type (class in akida.NP)
types (akida.NP.Info property)
U
unfuse_sepconv2d() (in module akida_models.unfuse_sepconv_layers)
unprogram() (akida.HardwareDevice method)
upscale() (quantizeml.tensors.FixedPoint method)
(quantizeml.tensors.QFloat method)
V
variables (akida.Layer property)
vendor_id (akida.HwVersion property)
version (akida.Device property)
vgg_utk_face() (in module akida_models)
vgg_utk_face_pretrained() (in module akida_models)
vit_b16() (in module akida_models)
vit_b32() (in module akida_models)
vit_imagenet() (in module akida_models)
vit_l16() (in module akida_models)
vit_l32() (in module akida_models)
vit_s16() (in module akida_models)
vit_s32() (in module akida_models)
vit_ti16() (in module akida_models)
VitEncoderBlock (class in akida)
voltage (akida.PowerEvent property)
W
WeightQuantizer (class in cnn2snn.quantization_ops)
(class in quantizeml.layers)
weights_homogeneity() (in module cnn2snn.transforms)
X
xywh_to_xyxy() (in module akida_models.detection.box_utils)
xyxy_to_xywh() (in module akida_models.detection.box_utils)
Y
yolo_base() (in module akida_models)
yolo_head_block() (in module akida_models.layer_blocks)
yolo_voc_pretrained() (in module akida_models)
yolo_widerface_pretrained() (in module akida_models)