Source code for akida.mapping

import akida
from enum import Enum

from .core import LayerType


[docs]class MapMode(Enum): """ Mapping mode Define the strategy for the hardware mapping. """ AllNps = 1 """ Maximize HW ressources (number of NPs used) with minimum HW passes.""" HwPr = 2 """ Maximize HW ressources (number of NPs used) with maximum HW passes. This mode provides the potential for higher-performances""" Minimal = 3 """ Minimize HW ressources or mode to use a custom MeshMapper"""
class SplitByValues(akida.MeshMapper): """ A custom MeshMapper that splits layers Args: split_width (int, optional): the split on width. Defaults to 64. split_height (int): the split on height. Defaults to 256. split_neurons (int): the split on filters. Defaults to 512. """ def __init__(self, split_width=64, split_height=256, split_neurons=512): akida.MeshMapper.__init__(self) self.split_width = split_width self.split_height = split_height self.split_neurons = split_neurons def select_nps(self, source_nps, num_nps, type): return source_nps[:num_nps] def cnp_max_width(self): return self.split_width def cnp_max_height(self): return self.split_height def cnp_max_filters(self): return self.split_neurons def _get_layer_mapped(model): return sum(1 for layer in model.layers if layer.mapping is not None) def _get_model_pass(model): nb_pass = 0 for seq in model.sequences: nb_pass += len(seq.passes) return nb_pass def _get_model_seq(model): return len(model.sequences) def _get_model_nps(model): hrc_layers = [LayerType.InputConvolutional, LayerType.InputConv2D, LayerType.Stem] nb_nps = 0 for seq in model.sequences: for current_pass in seq.passes: for layer in current_pass.layers: # The layer is mapped on NPs but not on HRC if layer.parameters.layer_type not in hrc_layers and layer.mapping is not None: nb_nps += len(layer.mapping.nps) return nb_nps def _map_splited_model(model, device, hw_only, neurons): try: split_width = 32 if device.version.product_id in [0, 0xa1] else 64 mapper = SplitByValues(split_neurons=neurons, split_width=split_width) akida.MeshMapper.replace(mapper) model._map(device, hw_only=hw_only) finally: # TODO restore the previous mesh mapper akida.MeshMapper.replace(None) return model def _is_better_map(model_ref, model_ref_mapped, model_cur, model_cur_mapped, consider_pass_nb=True): # Better if we can map now if model_ref_mapped != model_cur_mapped: return model_cur_mapped # Returns if a current model has a better mapping than a reference model nb_layer_mapped_ref = _get_layer_mapped(model_ref) nb_layer_mapped_cur = _get_layer_mapped(model_cur) # Better if more layers mapped if nb_layer_mapped_ref != nb_layer_mapped_cur: return nb_layer_mapped_ref < nb_layer_mapped_cur nb_seq_ref = _get_model_seq(model_ref) nb_seq_cur = _get_model_seq(model_cur) # Better with low seq number if nb_seq_ref != nb_seq_cur: return nb_seq_cur < nb_seq_ref if consider_pass_nb: np_pass_ref = _get_model_pass(model_ref) np_pass_cur = _get_model_pass(model_cur) if np_pass_ref != np_pass_cur: # Better if less passes return np_pass_cur < np_pass_ref nb_nps_ref = _get_model_nps(model_ref) nb_nps_cur = _get_model_nps(model_cur) # Better if we use more NPs return nb_nps_ref <= nb_nps_cur def _map_search(model, device, hw_only, min_pass): # Obtains the reference mapped model, using the minimal hardware ressources try: model_ref = akida.Model(layers=model.layers[:]) except Exception: # If cannot copy the model, we use Minimal mapping model._map(device, hw_only=hw_only) return model_ref_mapped = True try: model_ref._map(device, hw_only=hw_only) except Exception: model_ref_mapped = False # TODO retrieved the defaults split values min_split_neurons = 0 max_split_neurons = 512 cur_split_neurons = max_split_neurons best_split_neurons = -1 while min_split_neurons + 2 <= max_split_neurons: cur_split_neurons = int((min_split_neurons + max_split_neurons) / 2) assert cur_split_neurons > 0 model_cur_mapped = True try: model_cur = akida.Model(layers=model.layers[:]) model_cur = _map_splited_model(model_cur, device, hw_only=hw_only, neurons=cur_split_neurons) except Exception: model_cur_mapped = False if _is_better_map(model_ref, model_ref_mapped, model_cur, model_cur_mapped, min_pass): model_ref = model_cur model_ref_mapped = model_cur_mapped max_split_neurons = cur_split_neurons best_split_neurons = cur_split_neurons else: min_split_neurons = cur_split_neurons del model_cur # Apply mapping to model if best_split_neurons > 0 and model_ref_mapped: # Apply mapping found _map_splited_model(model, device, hw_only=hw_only, neurons=best_split_neurons) else: # Apply default mapping because not better was found model._map(device, hw_only=hw_only)