Source code for akida_models.centernet.model_centernet

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
CenterNet model definition for detection
"""

__all__ = ["centernet_base", "centernet_voc_pretrained"]

import numpy as np

from keras import Model, initializers
from keras.layers import Conv2D, Add

from cnn2snn import set_akida_version, AkidaVersion

from .. import akidanet18_imagenet
from ..layer_blocks import (separable_conv_block, conv_block, conv_transpose_block,
                            sepconv_transpose_block)
from ..utils import fetch_file
from ..model_io import load_model, get_model_path
from ..imagenet.imagenet_train import rescale


[docs]def centernet_base(input_shape=(384, 384, 3), classes=20, input_scaling=(127, -1), separable_cutoff=64): """ A Keras Model implementing the CenterNet architecture, on top of an AkidaNet backbone Args: input_shape (tuple, optional): input shape. Defaults to (384, 384, 3). classes (int, optional): number of output classes. Defaults to 20. input_scaling (tuple, optional): input scaling. Defaults to (127, -1). separable_cutoff (int, optional): maximum number of filters for standard Conv layers. Layers with more filters than this will be defined as separable Convs. Defaults to 64. Returns: keras.Model: a Keras Model instance. """ def _build_backbone(): base_model = akidanet18_imagenet(input_shape=input_shape, include_top=False, pooling="avg", input_scaling=input_scaling) # Last three layers immediately prior to stride-2 layers. # And a final layer, immediately prior to the GAP pooling op outputs_layer_names = ['stage_0/conv_3/relu', 'stage_1/conv_3/relu', 'pw_stage_2/conv_3/relu', 'pw_stage_3/conv_3/relu'] outputs = [base_model.get_layer(name=name).output for name in outputs_layer_names] backbone = Model(inputs=base_model.inputs, outputs=outputs) return backbone def _get_block_params(n_filt, separable_cutoff): if n_filt <= separable_cutoff: neck_convs_ks = (3, 3) curr_block = conv_block block_type = "conv" transpose_block = conv_transpose_block kwargs = {} else: neck_convs_ks = (5, 5) curr_block = separable_conv_block block_type = "sepconv" transpose_block = sepconv_transpose_block kwargs = {"fused": False} return neck_convs_ks, curr_block, block_type, transpose_block, kwargs # This model is only available for Akida 2.0 with set_akida_version(AkidaVersion.v2): # Create an AkidaNet network without top layers backbone = _build_backbone() # Rescale the backbone input shape if backbone.input.shape[1] != input_shape[0] or backbone.input.shape[2] != input_shape[1]: backbone = rescale(backbone, [input_shape[0], input_shape[1]]) # Extract skip connections skips = backbone.output[::-1][1:] num_deconv_filters = [skip.shape[-1] for skip in skips] x = backbone.output[-1] for i, (n_filt) in enumerate(num_deconv_filters): neck_convs_ks, curr_block, block_type, transpose_block, kwargs = \ _get_block_params(n_filt, separable_cutoff) x = curr_block(x, filters=n_filt, name=f'neck_{block_type}_{i}', kernel_size=neck_convs_ks, padding='same', use_bias=False, relu_activation='ReLU7.5', add_batchnorm=True, **kwargs) x = transpose_block(x, filters=n_filt, name=f"neck_transpose_{block_type}_{i}", kernel_size=(4, 4), padding="same", strides=(2, 2), use_bias=False, relu_activation='ReLU7.5', add_batchnorm=True) x = Add(name=f"neck_add_{i}")([x, skips[i]]) # Build the head which is composed of 2 consecutive convs bias_initializer = initializers.Constant(float(-np.log((1 - 0.1) / 0.1))) init_kernel = initializers.RandomNormal(stddev=0.001, seed=6) # In the legacy model there is 3 branches of 64 filters each one. # This could be merged in one branch x = conv_block(x, 3 * 64, (3, 3), add_batchnorm=True, use_bias=False, relu_activation='ReLU7.5', padding="same", name="head_conv_1", kernel_initializer=init_kernel) # The output is built by #classes and box coordinates in xywh x = Conv2D(classes + 4, (1, 1), padding="same", use_bias=True, name="head_conv_2", bias_initializer=bias_initializer, kernel_initializer=init_kernel)(x) # Build the model return Model(inputs=backbone.input, outputs=x, name='centernet_base')
[docs]def centernet_voc_pretrained(quantized=True): """ Helper method to retrieve an `centernet_base` model that was trained on VOC detection dataset. Args: quantized (bool, optional): a boolean indicating whether the model should be loaded quantized or not. Defaults to True. Returns: keras.Model: a Keras Model instance. """ if quantized: model_name_v2 = 'centernet_akidanet18_voc_384_i8_w8_a8.h5' file_hash_v2 = 'cae0f8f36b2d8d01d6049f03185c05d5a9eb3deed47516f7968dc91bb051d81e' else: model_name_v2 = 'centernet_akidanet18_voc_384.h5' file_hash_v2 = '64f220a63aacf653bd672804a5500f98a8dda06029cbe58d327413c9edd4a12f' model_path, model_name, file_hash = get_model_path("centernet", model_name_v2=model_name_v2, file_hash_v2=file_hash_v2) model_path = fetch_file(model_path, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_model(model_path)