#!/usr/bin/env python
# ******************************************************************************
# Copyright 2024 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
__all__ = ["SMAPE", "Saturation", "print_metric_table"]
from collections import defaultdict
import warnings
import numpy as np
import keras
[docs]class SMAPE(keras.metrics.Metric):
"""Compute the Symmetric Mean Absolute Percentage Error (SMAPE) as:
>>> mean(abs(x - y) / (abs(x) + abs(y)))
Reference: https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
Args:
name (str, optional): name of the metric. Defaults to "smape".
"""
def __init__(self, name="smape", **kwargs):
super().__init__(name=name, **kwargs)
self.error = self.add_weight(name='error', initializer='zeros', dtype="float64")
self.count = self.add_weight(name='count', initializer='zeros', dtype="float64")
def update_state(self, y_true, y_pred):
assert y_true.shape == y_pred.shape
total = y_true.size
# Skip values that undefine the metric
mask = (y_true == 0) & (y_pred == 0)
y_true = y_true[~mask]
y_pred = y_pred[~mask]
# Compute smape
smape = np.sum(np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred)))
self.error.assign_add(smape)
# Update the metric count.
# Note here we take into account the set of values y_true = y_pred = 0,
# since the error they contribute is zero.
self.count.assign_add(total)
def result(self):
if self.count == 0:
return 0.0
return self.error / self.count
def reset_states(self):
self.error.assign(0.0)
self.count.assign(0.0)
[docs]class Saturation(keras.metrics.Metric):
"""Returns the percentage of saturating values.
We consider a value saturated if it is one of {min_value, max_value}
Args:
min_value (np.ndarray, optional): the minimum of values.
If not provided, it is inferred from the values type. Defaults to None.
max_value (np.ndarray, optional): the maximum of values.
If not provided, it is inferred from the values type. Defaults to None.
"""
def __init__(self, name="saturation", min_value=None, max_value=None, **kwargs):
super().__init__(name=name, **kwargs)
self._min_value = min_value
self._max_value = max_value
self.total = self.add_weight(name='total', initializer='zeros', dtype="int64")
self.count = self.add_weight(name='count', initializer='zeros', dtype="int64")
@property
def min_value(self):
if self._min_value is None:
iinfo = np.iinfo(self.dtype) if np.issubdtype(self.dtype, np.integer) else None
assert iinfo, f"Unknown minimum value for data type {self.dtype}"
return iinfo.min
return self._min_value
@property
def max_value(self):
if self._max_value is None:
iinfo = np.iinfo(self.dtype) if np.issubdtype(self.dtype, np.integer) else None
assert iinfo, f"Unknown maximum value for data type {self.dtype}"
return iinfo.max
return self._max_value
def update_state(self, values):
if np.any(values > self.max_value) or np.any(values < self.min_value):
warnings.warn(f"Saturation is not accurate: there are values outside of range "
f"[{self.min_value}, {self.max_value}].")
sat_values = np.sum((values == self.min_value) | (values == self.max_value))
self.total.assign_add(sat_values)
self.count.assign_add(values.size)
def result(self):
count = self.count if self.count != 0 else 1
return 100 * (self.total / count)
def reset_states(self):
self.total.assign(0)
self.count.assign(0)
def get_config(self):
config = super().get_config()
config.update({"min_value": self._min_value, "max_value": self._max_value})
return config
[docs]def print_metric_table(summary, model_name=""):
"""Print a table with the results of a set of metrics.
The following format is expected:
.. code-block::
# Format for metrics
# 1. Simple set of metrics
metrics_for_key_1 = {"metric_1": key1_metric1_value, "metric_2": key1_metric2_value}
# 2. List of simple set of metrics
metrics_for_key_2 = [{"metric_1": key2_metric1_value1, "metric_2": key2_metric2_value1},
{"metric_1": key2_metric1_value2, "metric_2": key2_metric2_value2}]
# 3. List of complex set of metrics
metrics_for_key_3 = [metrics_for_key_2, metrics_for_key_2]
# Summary
summary = {
"key_1": metrics_for_key_1,
"key_2": metrics_for_key_2,
"key_3": metrics_for_key_3,
}
Args:
summary (dict): summary of metrics to draw
model_name (str, optional): A model name to display. Defaults to "".
Note:
All metrics must contain the same set of measures
"""
FLOAT_PRECISION = 4
saturate = False
def _flat_measures(summary):
nonlocal saturate
new_summary = {}
for name, measures in summary.items():
if isinstance(measures, (list, tuple)):
new_el = _flat_measures({f"{name}:{idx+1}": v for idx, v in enumerate(measures)})
else:
assert isinstance(measures, dict), f"Wrong measurement format for {name}."
# Check if saturation is higher than 60 %
saturated_layer = measures.get("Saturation (%)", 0.0) > 60
new_el = {("*" if saturated_layer else "") + name: measures}
saturate |= saturated_layer
new_summary.update(new_el)
return new_summary
def _find_max_length(summary):
max_key_len = defaultdict(int)
for values in summary.values():
for key, val in values.items():
# Variable length is given by: integer part + '.' + float precision
var_len = len(str(val).split('.')[0]) + 1 + FLOAT_PRECISION
# Take into account length of key
max_key_len[key] = max(max_key_len[key], var_len, len(key))
return max_key_len
summary = _flat_measures(summary)
# Compute lengths per column
title_names = "Layer/node"
max_name_len = max(*(len(x) for x in summary), len(title_names))
max_len_per_key = _find_max_length(summary)
# Print head
title_measures_cols = " | ".join([k.ljust(v) for k, v in max_len_per_key.items()])
title_cols = title_names.ljust(max_name_len) + " | " + title_measures_cols
total_table_len = len(title_cols)
print(f"\nQuantization error for {model_name}:\n" + "=" * total_table_len)
print(title_cols + "\n" + "=" * total_table_len, end="")
# Print measures
for name, measures in summary.items():
print("\n" + name.ljust(max_name_len), end="")
for key, just_len in max_len_per_key.items():
if key not in measures:
raise KeyError(f"'{name}' does not contain '{key}' in measures.")
str_measure = ("{:." + str(FLOAT_PRECISION) + "f}").format(measures[key])
print(" | " + str_measure.ljust(just_len), end="")
print("\n" + "=" * total_table_len)
# Print footer
if saturate:
print("* Measurement results are not reliable, as outputs saturate by more than 60%")