Model zoo performances
This page lets you discover all of Akida model zoo machine learning models with their respective performances.
Note
The download links provided point towards standard Tensorflow Keras models that must be converted to Akida model using cnn2snn.convert.
Image domain
Classification
Architecture |
Resolution |
Dataset |
Quantization |
Top-1 accuracy |
Example |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|---|
AkidaNet 0.25 |
160 |
ImageNet |
8/4/4 |
42.58% |
480K |
392.3 |
23 |
||
AkidaNet 0.5 |
160 |
ImageNet |
8/4/4 |
57.80% |
1.4M |
1099.4 |
30 |
||
AkidaNet |
160 |
ImageNet |
8/4/4 |
66.94% |
4.4M |
4090.2 |
81 |
||
AkidaNet 0.25 |
224 |
ImageNet |
8/4/4 |
46.71% |
480K |
398.1 |
25 |
||
AkidaNet 0.5 |
224 |
ImageNet |
8/4/4 |
61.30% |
1.4M |
1214.4 |
38 |
||
AkidaNet |
224 |
ImageNet |
8/4/4 |
69.65% |
4.4M |
6322.6 |
129 |
||
AkidaNet 0.5 edge |
160 |
ImageNet |
8/4/4 |
51.66% |
4.0M |
2017.1 |
38 |
||
AkidaNet 0.5 edge |
224 |
ImageNet |
8/4/4 |
54.03% |
4.0M |
2130.1 |
46 |
||
AkidaNet 0.5 |
160 |
Cats vs dogs |
8/4/4 |
96.60% |
868K |
698.4 |
24 |
||
AkidaNet 0.25 |
224 |
Imagenette |
8/4/4 |
91.54% |
227K |
203.9 |
22 |
||
AkidaNet 0.5 |
224 |
Imagenette |
8/4/4 |
95.67% |
873K |
815.5 |
32 |
||
AkidaNet |
224 |
Imagenette |
8/4/4 |
97.58% |
3.4M |
5544.2 |
116 |
||
AkidaNet 0.5 |
224 |
SIIM-ISIC Melanoma Classification |
8/4/4 |
98.31% - AUROC 0.7969 |
868K |
811.4 |
32 |
||
AkidaNet 0.5 |
224 |
ODIR-5K Ocular disease recognition |
8/4/4 |
92.42% - AUROC 0.9847 |
870K |
811.4 |
32 |
||
AkidaNet 0.5 |
224 |
Retinal OCT ocular disease recognition |
8/4/4 |
81.10% - AUROC 0.9662 |
870K |
811.4 |
32 |
||
AkidaNet 0.5 |
224 |
PlantVillage |
8/4/4 |
97.92% |
1.1M |
1018.8 |
33 |
||
AkidaNet 0.5 |
224 |
CIFAR10 |
8/4/4 |
92.89% |
896K |
829.3 |
33 |
||
AkidaNet 0.25 |
96 |
Visual Wake Words |
8/4/4 |
84.77% |
229K |
179.2 |
16 |
||
MobileNetV1 0.25 |
160 |
ImageNet |
8/4/4 |
40.86% |
467K |
365.4 |
23 |
||
MobileNetV1 0.5 |
160 |
ImageNet |
8/4/4 |
55.94% |
1.3M |
1017.1 |
30 |
||
MobileNetV1 |
160 |
ImageNet |
8/4/4 |
66.40% |
4.2M |
3554.5 |
78 |
||
MobileNetV1 0.25 |
224 |
ImageNet |
8/4/4 |
45.12% |
467K |
366.9 |
25 |
||
MobileNetV1 0.5 |
224 |
ImageNet |
8/4/4 |
59.76% |
1.3M |
1075.4 |
38 |
||
MobileNetV1 |
224 |
ImageNet |
8/4/4 |
69.53% |
4.2M |
5251.8 |
123 |
||
MobileNetV1 0.5 edge |
160 |
ImageNet |
8/4/4 |
49.69% |
3.9M |
1935.1 |
38 |
||
MobileNetV1 0.5 edge |
224 |
ImageNet |
8/4/4 |
51.83% |
3.9M |
1993.4 |
46 |
||
VGG11 |
224 |
ImageNet |
8/4/4 |
52.22% |
47.1M |
34825.2 |
21 |
||
GXNOR |
28 |
MNIST |
2/2/1 |
99.20% |
1.6M |
412.6 |
3 |
Object detection
Architecture |
Resolution |
Dataset |
Quantization |
mAP |
Example |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|---|
YOLOv2 |
224 |
PASCAL-VOC 2007 - person and car classes |
8/4/4 |
38.85% |
3.6M |
3061.0 |
71 |
||
YOLOv2 |
224 |
WIDER FACE |
8/4/4 |
73.81% |
3.5M |
3052.7 |
71 |
Regression
Architecture |
Resolution |
Dataset |
Quantization |
MAE |
Example |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|---|
VGG-like |
32 |
UTKFace (age estimation) |
8/2/2 |
6.1791 |
458K |
139.8 |
6 |
Face recognition
Architecture |
Resolution |
Dataset |
Quantization |
Accuracy |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|
AkidaNet 0.5 |
112x96 |
CASIA Webface face identification |
8/4/4 |
70.18% |
2.3M |
1929.8 |
21 |
|
AkidaNet 0.5 edge |
112x96 |
CASIA Webface face identification |
8/4/4 |
71.13% |
23.6M |
6979.6 |
35 |
|
AkidaNet 0.5 |
112x96 |
LFW face verification |
8/4/4 |
97.25% |
933K |
691.2 |
20 |
Audio domain
Keyword spotting
Architecture |
Dataset |
Quantization |
Top-1 accuracy |
Example |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|
DS-CNN |
Google speech command |
8/4/4 |
91.72% |
22.7K |
22.8 |
5 |
Time domain
Fault detection
Architecture |
Dataset |
Quantization |
Accuracy |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|
Convtiny |
CWRU Electric Motor Ball Bearing Fault Diagnosis |
8/2/4 |
99.3% |
59K |
25.3 |
3 |
Classification
Architecture |
Resolution |
Dataset |
Quantization |
Accuracy |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|
AkidaNet 0.5 |
224 |
Physionet2017 ECG classification |
8/4/4 |
73.50% - AUROC 0.7940 |
1.1M |
1008.4 |
36 |
Point cloud
Classification
Architecture |
Dataset |
Quantization |
Accuracy |
Input scaling |
#Params |
Size (KB) |
NPs |
Download |
---|---|---|---|---|---|---|---|---|
PointNet++ |
ModelNet40 3D Point Cloud |
8/4/4 |
84.76% |
(127, 127) |
602K |
528.5 |
17 |