Akida 1.0 Hardware constraints

Warning

The following constraints concern only Akida 1.0 IP based solutions and the AKD1000 reference SoC.

For compatibility with multiple possible hardware backends downstream, CNN2SNN and the Akida simulator impose few constraints on layer dimensions. However, hardware does have limits in this respect, which will be checked at the stage of mapping a model to a specific device (real or virtual). This page details the limits for the AKD1000 SoC.

Please refer to Akida V1 layers for layers description.

Input dimensions

Width

Height

Channels

[5:256]

>= 5

1, 3

Convolution parameters

Kernel Size

Stride

Type

3×3, 5×5, 7×7

1, 2, 3

Same, Valid

Maximum number of filters

Kernel Sise

3×3

5×5

7×7

Max(1 ch)

512

192

96

Max(3 ch)

192

64

32

Max Pooling size

1×1, 1×2, 2×1, 2×2

Quantization bitwidth

Input

Weights

Activation

8

1, 2, 4, 8

1, 2, 4

Convolution parameters

Kernel Size

Stride

Type

1×1, 3×3, 5×5, 7×7

1, 2

Same

Max Pooling parameters

Size

Stride

1×1, 2×2

1, 2

Global Average Pooling width

[1:32]

Quantization bitwidth

Input

Weights

Activation

1, 2, 4

1, 2, 4

1, 2, 4

Convolution parameters

Kernel Size

Stride

Type

3×3, 5×5, 7×7

1, 2

Same

Max Pooling parameters

Size

Stride

1×1, 2×2

1, 2

Global Average Pooling width

[1:32]

Quantization bitwidth

Input

Weights

Activation

1, 2, 4

2, 4

1, 2, 4

Input dimensions

Width

Height

WxHxC

1

1

<= 57334

Quantization bitwidth

Input

Weights

Activation

1, 2, 4

1, 2, 4

1, 2, 4