from akida.core import (Layer, Padding, PoolType, LayerType, LayerParams)
[docs]class Convolutional(Layer):
"""This represents a standard Convolutional layer.
The Convolutional layer accepts 1-bit, 2-bit or 4-bit 3D input tensors with
an arbitrary number of channels.
The Convolutional layer can be configured with 1-bit, 2-bit or 4-bit weights.
It applies a convolution (not a cross-correlation) optionally followed by a
pooling operation to the input tensors.
It can optionally apply a step-wise ReLU activation to its outputs.
The layer expects a 4D tensor whose first dimension is the sample index
as input.
It returns a 4D tensor whose first dimension is the sample index and the
last dimension is the number of convolution filters.
The order of the input spatial dimensions is preserved, but their value may
change according to the convolution and pooling parameters.
Args:
kernel_size (list): list of 2 integer representing the spatial
dimensions of the convolutional kernel.
filters (int): number of filters.
name (str, optional): name of the layer. Defaults to empty string
padding (:obj:`Padding`, optional): type of convolution. Defaults to
Padding.Same.
kernel_stride (list, optional): list of 2 integer representing the
convolution stride (X, Y). Defaults to (1, 1).
weights_bits (int, optional): number of bits used to quantize weights.
Defaults to 1.
pool_size (list, optional): list of 2 integers, representing the window
size over which to take the maximum or the average (depending on
pool_type parameter). Defaults to (-1, -1).
pool_type (:obj:`PoolType`, optional): pooling type
(NoPooling, Max or Average). Defaults to Pooling.NoPooling.
pool_stride (list, optional): list of 2 integers representing
the stride dimensions. Defaults to (-1, -1).
activation (bool, optional): enable or disable activation
function. Defaults to True.
act_bits (int, optional): number of bits used to quantize
the neuron response. Defaults to 1.
"""
def __init__(self,
kernel_size,
filters,
name="",
padding=Padding.Same,
kernel_stride=(1, 1),
weights_bits=1,
pool_size=(-1, -1),
pool_type=PoolType.NoPooling,
pool_stride=(-1, -1),
activation=True,
act_bits=1):
try:
pooling_stride_x = pool_stride[0]
if pool_stride[0] < 0:
pooling_stride_x = pool_size[0]
pooling_stride_y = pool_stride[1]
if pool_stride[1] < 0:
pooling_stride_y = pool_size[1]
params = LayerParams(
LayerType.Convolutional, {
"kernel_width": kernel_size[0],
"kernel_height": kernel_size[1],
"padding": padding,
"filters": filters,
"stride_x": kernel_stride[0],
"stride_y": kernel_stride[1],
"weights_bits": weights_bits,
"pooling_width": pool_size[0],
"pooling_height": pool_size[1],
"pool_type": pool_type,
"pooling_stride_x": pooling_stride_x,
"pooling_stride_y": pooling_stride_y,
"activation": activation,
"act_bits": act_bits
})
# Call parent constructor to initialize C++ bindings
# Note that we invoke directly __init__ instead of using super, as
# specified in pybind documentation
Layer.__init__(self, params, name)
except BaseException:
self = None
raise