Source code for akida.layers.stem

from akida.core import (Layer, LayerParams, LayerType)


[docs]class Stem(Layer): """Stem layer corresponding to the Stem block of Transformer models. It's composed of the following layers: - The Embedding layer - The Reshape layer - The ClassToken (+ DistToken for distilled model) layer(s) - The AddPosEmbedding layer This layer covers all the above layers operations. Note that final output values will be saturated on the range that can be represented with output_bits. Args: input_shape (tuple): the spatially square 3D input shape. filters (int, optional): Positive integer, dimensionality of the output space. Defaults to 192. kernel_size (int, optional): kernel size. Defaults to 16. output_bits (int, optional): output bitwidth. Defaults to 8. buffer_bits (int, optional): buffer bitwidth. Defaults to 32. num_non_patch_tokens (int, optional): number of non patch tokens to concatenate with the input along it last axis. Defaults to 0. name (str, optional): name of the layer. Defaults to empty string. """ def __init__(self, input_shape, filters=192, kernel_size=16, output_bits=8, buffer_bits=32, num_non_patch_tokens=0, name=""): try: params = LayerParams( LayerType.Stem, { "input_spatial_size": input_shape[0], "input_channels": input_shape[2], "filters": filters, "kernel_size": kernel_size, "output_bits": output_bits, "buffer_bits": buffer_bits, "num_non_patch_tokens": num_non_patch_tokens }) # Call parent constructor to initialize C++ bindings # Note that we invoke directly __init__ instead of using super, as # specified in pybind documentation Layer.__init__(self, params, name) except BaseException: self = None raise