Source code for akida_models.detection.map_evaluation

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2017-2018 Fizyr (https://fizyr.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
Module used to compute mAP scores for YOLO classification.
"""

__all__ = ["MapEvaluation"]

import keras
import numpy as np

from keras.utils import io_utils
from .processing import load_image, preprocess_image, decode_output
from .box_utils import compute_overlap


[docs]class MapEvaluation(keras.callbacks.Callback): """ Evaluate a given dataset using a given model. Code originally from https://github.com/fizyr/keras-retinanet. Args: model (keras.Model): model to evaluate. val_data (dict): dictionary containing validation data as obtained using `preprocess_widerface.py` module labels (list): list of labels as strings anchors (list): list of anchors boxes period (int, optional): periodicity the precision is printed, defaults to once per epoch. obj_threshold (float, optional): confidence threshold for a box nms_threshold (float, optional): non-maximal supression threshold max_box_per_image (int, optional): maximum number of detections per image is_keras_model (bool, optional): indicated if the model is a Keras model (True) or an Akida model (False) decode_output_fn (Callable, optional): function to decode model's outputs. Defaults to :func:`decode_output` (yolo decode output function). Returns: A dict mapping class names to mAP scores. """ def __init__(self, model, val_data, labels, anchors, period=1, obj_threshold=0.5, nms_threshold=0.5, max_box_per_image=10, is_keras_model=True, decode_output_fn=decode_output): super().__init__() self._model = model self._data = val_data self._data_len = len(val_data) self._labels = labels self._num_classes = len(labels) self._anchors = anchors self._period = period self._obj_threshold = obj_threshold self._nms_threshold = nms_threshold self._max_box_per_image = max_box_per_image self._is_keras_model = is_keras_model self._decode_output = decode_output_fn
[docs] def on_epoch_end(self, epoch, logs=None): """ Keras callback called at the end of an epoch. Args: epoch (int): index of epoch. logs (dict, optional): metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val. For training epoch, the values of the Model’s metrics are returned. Example: {‘loss’: 0.2, ‘acc’: 0.7}. Defaults to None. """ epoch += 1 if self._period != 0 and (epoch % self._period == 0 or epoch == self.params.get('epochs', -1)): _map, average_precisions = self.evaluate_map() io_utils.print_msg("") for label, average_precision in average_precisions.items(): io_utils.print_msg(self._labels[label] + ' {:.4f}'.format(average_precision)) io_utils.print_msg('mAP: {:.4f}\n'.format(_map)) logs.update({'map': _map})
[docs] def evaluate_map(self): """ Evaluates current mAP score on the model. Returns: tuple: global mAP score and dictionnary of label and mAP for each class. """ average_precisions = self._calc_avg_precisions() _map = sum(average_precisions.values()) / len(average_precisions) return _map, average_precisions
def _load_annotations(self, i): annots = [] for obj in self._data[i]['boxes']: annot = [ obj['x1'], obj['y1'], obj['x2'], obj['y2'], self._labels.index(obj['label']) ] annots += [annot] return np.array(annots) def _calc_avg_precisions(self): # gather all detections and annotations all_detections = [[None for _ in range(self._num_classes)] for _ in range(self._data_len)] all_annotations = [[None for _ in range(self._num_classes)] for _ in range(self._data_len)] for i in range(self._data_len): raw_image = load_image(self._data[i]['image_path']) raw_height, raw_width, _ = raw_image.shape if self._is_keras_model: image = preprocess_image(raw_image, self._model.input_shape[1:]) input_image = image[np.newaxis, :] output = self._model.predict(input_image, verbose=0)[0] else: image = preprocess_image(raw_image, self._model.layers[0].input_dims) input_image = image[np.newaxis, :].astype(np.uint8) potentials = self._model.predict(input_image)[0] if self._anchors: h, w, _ = potentials.shape output = potentials.reshape( (h, w, len(self._anchors), 4 + 1 + self._num_classes)) else: output = potentials pred_boxes = self._decode_output(output, self._anchors, self._num_classes, self._obj_threshold, self._nms_threshold) score = np.array([box.get_score() for box in pred_boxes]) pred_labels = np.array([box.get_label() for box in pred_boxes]) if len(pred_boxes) > 0: pred_boxes = np.array([[ box.x1 * raw_width, box.y1 * raw_height, box.x2 * raw_width, box.y2 * raw_height, box.score ] for box in pred_boxes]) else: pred_boxes = np.array([[]]) # sort the boxes and the labels according to scores score_sort = np.argsort(-score) pred_labels = pred_labels[score_sort] pred_boxes = pred_boxes[score_sort] # limit the number of predictions to max_box_per_image based on # score number_of_predictions = pred_boxes.shape[0] if number_of_predictions > self._max_box_per_image: pred_labels = pred_labels[:self._max_box_per_image] pred_boxes = pred_boxes[:self._max_box_per_image, :] # copy detections to all_detections for label in range(self._num_classes): all_detections[i][label] = pred_boxes[pred_labels == label, :] annotations = self._load_annotations(i) # copy ground truth to all_annotations for label in range(self._num_classes): all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy() # compute mAP by comparing all detections and all annotations average_precisions = {} for label in range(self._num_classes): false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores = np.zeros((0,)) num_annotations = 0.0 for i in range(self._data_len): detections = all_detections[i][label] annotations = all_annotations[i][label] num_annotations += annotations.shape[0] detected_annotations = [] for d in detections: scores = np.append(scores, d[4]) if annotations.shape[0] == 0: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) continue overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations, mode="outer_product", box_format="xyxy") assigned_annotation = np.argmax(overlaps, axis=1) max_overlap = overlaps[0, assigned_annotation] if max_overlap >= 0.5 and assigned_annotation not in detected_annotations: false_positives = np.append(false_positives, 0) true_positives = np.append(true_positives, 1) detected_annotations.append(assigned_annotation) else: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) # no annotations -> AP for this class is 0 (is this correct?) if num_annotations == 0: average_precisions[label] = 0 continue # sort by score indices = np.argsort(-scores) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / num_annotations precision = true_positives / np.maximum( true_positives + false_positives, np.finfo(np.float64).eps) # compute average precision average_precision = self._compute_ap(recall, precision) average_precisions[label] = average_precision return average_precisions @staticmethod def _compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. Args: recall (list): the recall curve precision (list): the precision curve Returns: The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap