Source code for akida_models.detection.model_yolo

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2020 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
YOLO model definition for detection.
"""

__all__ = ["yolo_base", "yolo_widerface_pretrained", "yolo_voc_pretrained"]

import pickle

import numpy as np

from keras import Model

from ..layer_blocks import yolo_head_block
from ..imagenet.model_akidanet import akidanet_imagenet
from ..utils import fetch_file
from ..model_io import load_model, get_model_path


[docs]def yolo_base(input_shape=(224, 224, 3), classes=1, nb_box=5, alpha=1.0, input_scaling=(127.5, -1)): """ Instantiates the YOLOv2 architecture. Args: input_shape (tuple, optional): input shape tuple. Defaults to (224, 224, 3). classes (int, optional): number of classes to classify images into. Defaults to 1. nb_box (int, optional): number of anchors boxes to use. Defaults to 5. alpha (float, optional): controls the width of the model. Defaults to 1.0. input_scaling (tuple, optional): scale factor and offset to apply to inputs. Defaults to (127.5, -1). Note that following Akida convention, the scale factor is a number used as a divisor. Returns: keras.Model: a Keras Model instance. """ # Create an AkidaNet network without top layers base_model = akidanet_imagenet(input_shape=input_shape, alpha=alpha, include_top=False, input_scaling=input_scaling) # Add YOLO top layers to the base model input_shape = base_model.input_shape x = yolo_head_block(base_model.layers[-1].output, num_boxes=nb_box, classes=classes) model = Model(inputs=base_model.input, outputs=x, name='yolo_base') # Initialize detection layer weights layers = [layer for layer in model.layers if "detection_layer" in layer.name] assert len(layers) in (1, 2), "No detection layer found." if len(layers) == 1: # sepconv is fused on Akida v1 layer = layers[0] detection_weights = layer.get_weights() dw_weights_shape = detection_weights[0].shape pw_weights_shape = detection_weights[1].shape bias_shape = detection_weights[2].shape else: # sepconv is unfused on Akida v2 dw_layer = layers[0] pw_layer = layers[1] dw_weights = dw_layer.get_weights() assert len(dw_weights) == 1 # no bias pw_weights = pw_layer.get_weights() dw_weights_shape = dw_weights[0].shape pw_weights_shape = pw_weights[0].shape bias_shape = pw_weights[1].shape mu, sigma = 0, 0.1 grid_size = model.output_shape[1:3] grid_area = grid_size[0] * grid_size[1] dw_kernel = np.random.normal(mu, sigma, size=dw_weights_shape) / grid_area pw_kernel = np.random.normal(mu, sigma, size=pw_weights_shape) / grid_area bias = np.random.normal(mu, sigma, size=bias_shape) / grid_area if len(layers) == 1: layer.set_weights([dw_kernel, pw_kernel, bias]) else: dw_layer.set_weights([dw_kernel]) pw_layer.set_weights([pw_kernel, bias]) return model
[docs]def yolo_widerface_pretrained(quantized=True): """ Helper method to retrieve a `yolo_base` model that was trained on WiderFace dataset and the anchors that are needed to interpet the model output. Args: quantized (bool, optional): a boolean indicating whether the model should be loaded quantized or not. Defaults to True. Returns: keras.Model, list: a Keras Model instance and a list of anchors. """ anchors_name = 'widerface_anchors.pkl' anchors_path = fetch_file( 'https://data.brainchip.com/dataset-mirror/widerface/' + anchors_name, fname=anchors_name, file_hash='325f92336a310d83fed71765436ee343bf3e39cbc12fd099d30677761aee9376', cache_subdir='datasets/widerface') with open(anchors_path, 'rb') as handle: anchors = pickle.load(handle) if quantized: model_name_v1 = 'yolo_akidanet_widerface_iq8_wq4_aq4.h5' file_hash_v1 = 'd55744cbfbbe1131aa26015f38d99f1df7026347bae8f66683259e366e7b6e03' model_name_v2 = 'yolo_akidanet_widerface_i8_w4_a4.h5' file_hash_v2 = '13e4290c4f197c08ba93ded44a9f5a5ab07e793f1e216737134a700feeb74cf9' else: model_name_v1 = 'yolo_akidanet_widerface.h5' file_hash_v1 = 'fc1eedb343a97b637f7877a9978d0230962360643578f5fe357034d653b37e44' model_name_v2 = 'yolo_akidanet_widerface.h5' file_hash_v2 = '8dae0dac668f6a527a2603758051835801e2a5c838e1e39ac818d7eec674bdc0' model_path, model_name, file_hash = get_model_path("yolo", model_name_v1, file_hash_v1, model_name_v2, file_hash_v2) model_path = fetch_file(model_path, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_model(model_path), anchors
[docs]def yolo_voc_pretrained(quantized=True): """ Helper method to retrieve a `yolo_base` model that was trained on PASCAL VOC2012 dataset for 'person' and 'car' classes only, and the anchors that are needed to interpet the model output. Args: quantized (bool, optional): a boolean indicating whether the model should be loaded quantized or not. Defaults to True. Returns: keras.Model, list: a Keras Model instance and a list of anchors. """ anchors_name = 'voc_anchors.pkl' anchors_path = fetch_file( 'https://data.brainchip.com/dataset-mirror/voc/' + anchors_name, fname=anchors_name, file_hash='b1fe1ed12691e100646cf52b1320f05abd17b2f546d3e12cdee87758cc9ed0ba', cache_subdir='datasets/voc') with open(anchors_path, 'rb') as handle: anchors = pickle.load(handle) if quantized: model_name_v1 = 'yolo_akidanet_voc_iq8_wq4_aq4.h5' file_hash_v1 = 'e65b0b6bd4b08c2796c3bbea89343748195e29e240ce28e70489c53d06ca69d9' model_name_v2 = 'yolo_akidanet_voc_i8_w4_a4.h5' file_hash_v2 = 'a66791f482e33f4a2bc05db652e604ce494a5e6a6253749429535c4007938174' else: model_name_v1 = 'yolo_akidanet_voc.h5' file_hash_v1 = '5dff1dd3afafd512e105fa416b444431ca5f816ccc42d9efb49cfa34bd13e91d' model_name_v2 = 'yolo_akidanet_voc.h5' file_hash_v2 = '27de83b48fb0b054e33d3bb7d2482a8528c5964be10f5f153299782e5ac5580d' model_path, model_name, file_hash = get_model_path("yolo", model_name_v1, file_hash_v1, model_name_v2, file_hash_v2) model_path = fetch_file(model_path, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_model(model_path), anchors