Source code for quantizeml.layers.rescaling

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

__all__ = ["QuantizedRescaling"]

import tensorflow as tf
import keras

from .layers_base import register_quantize_target, register_no_output_quantizer, tensor_inputs
from ..tensors import QFloat


[docs]@register_quantize_target(keras.layers.Rescaling) @register_no_output_quantizer @tf.keras.utils.register_keras_serializable() class QuantizedRescaling(keras.layers.Rescaling): """A layer that multiplies integer inputs by a scale This is a simplified version of the keras Rescaling layer: - it only supports a scalar scale, - it only supports zero offsets. This layer assumes the inputs are 8-bit integer: it simply wraps them into an 8-bit per-tensor QFloat with the specified scale. Args: scale (float): a scalar scale. """ def __init__(self, scale, **kwargs): super().__init__(scale, **kwargs) if tf.rank(self.scale) > 0: raise ValueError("QuantizedRescaling only accepts scalar scale.") if tf.reduce_any(self.offset != 0): raise ValueError("QuantizedRescaling only accepts zero offset.") @tensor_inputs([tf.Tensor]) def call(self, inputs): # Wrap them into a QFloat with the specified scale return QFloat(inputs, self.scale)