#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
__all__ = ["QuantizedDense1D", "get_qgemm"]
import numpy as np
from onnx import TensorProto as TP
from onnx.helper import make_node
from .base_layer import OnnxLayer
from .subgraph_ops import cast_tensors_to, get_scale_out_ops
from .subgraph_ops.activation import get_activation_ops
from .node_constraints import check_supported_attributes
from ..graph_tools import TENSOR_SHAPE, get_node, get_variable, value_info_to_tensor_shape
from ..quantization.weights import quantize_weights, quantize_vector, align_to
from ..quantization.outputs import downscale
def get_qgemm(nodes, graph):
gemm_node = get_node(nodes, 'Gemm')
assert gemm_node is not None
check_supported_attributes(nodes)
flatten = bool(get_node(nodes, 'Flatten'))
act_node = get_node(nodes, 'Relu')
qgemm = QuantizedDense1D(flatten=flatten, activation=bool(act_node), name=gemm_node.name)
# Sets the weights to configure the operation chain
qgemm.set_weight("kernel", get_variable(gemm_node.input[1], graph))
# If third attribute is there and it is not empty, then there is a bias
if len(gemm_node.input) == 3 and gemm_node.input[2]:
qgemm.set_weight("bias", get_variable(gemm_node.input[2], graph))
if act_node and len(act_node.input) > 2 and act_node.input[2]:
qgemm.set_weight("max_value", get_variable(act_node.input[2], graph))
return qgemm
[docs]class QuantizedDense1D(OnnxLayer):
"""Intermediate representation of Flatten() + QGemm() + ReLU() as an exportable node.
Args:
flatten (bool, optional): whether to flatten the inputs. Defaults to False.
activation (bool, optional): whether to apply relu operation. Defaults to False.
name (str, optional): the node name. Defaults to ''.
"""
def __init__(self, flatten=False, activation=False, name=''):
super().__init__("QuantizedDense1D", name=name)
# Save properties need to serialize operation name
self.serialize_attr["flatten"] = flatten
self.serialize_attr["activation"] = activation
# Declare weights
self._add_weight("kernel")
self._add_weight("bias")
self._add_weight("max_value")
def __build__(self, input_ts, downscale=True):
assert input_ts.dtype == np.int8
assert self.weights["kernel"].ndim == 2
filters = self.weights["kernel"].shape[0]
# The chain of operations is modified if downscale is needed
self.serialize_attr["scale"] = downscale
# Compute output shape
output_type = "int8" if downscale else "int32"
output_ts = TENSOR_SHAPE((input_ts.shape[0], filters), np.dtype(output_type))
return output_ts
def __quantize__(self, qinput, out_tensor_range, force_fp=False):
i_scale = qinput.weights["scale"]
kernel = self.weights["kernel"]
filters, channels = kernel.shape
# Rescale kernel according to input scale. This operation is different if
# pattern contain a Flatten.
assert i_scale.ndim <= 1
if 'Flatten' in self.op_type:
# If flatten is there, we need to reshape weights to apply input scale
_, c, x, y = value_info_to_tensor_shape(self.input).shape
# Unroll first flattened inputs
kernel = np.reshape(kernel, (filters, c, x, y))
# Divide kernel by input shape (that has shape of c)
kernel = kernel / align_to(i_scale, kernel.ndim)
# Reshape back to original shape
kernel = np.reshape(kernel, (filters, channels))
else:
kernel = kernel / align_to(i_scale, kernel.ndim)
# Quantize and set weights
qweights, i_scale = quantize_weights(kernel)
# Prepare tensors list with unique names
gemm_name = self.name
prefix = gemm_name + "_"
weights_dict = {prefix + "Wi": qweights}
if "Biased" in self.op_type:
qbias = quantize_vector(self.weights["bias"], i_scale)
weights_dict[prefix + "B"] = qbias
# Reshape i_scale to match with channel axis
i_scale = align_to(i_scale, qweights.ndim)
# Quantize max value when there is an activation
if "Clipped" in self.op_type:
qmax_value = quantize_vector(self.weights["max_value"], i_scale, signed=False)
weights_dict[prefix + "max_value"] = qmax_value
if "Scaled" not in self.op_type:
output_scale = i_scale.squeeze()
else:
# Now consider calibrated output range
scale, s_out, output_scale = downscale(out_tensor_range, i_scale, force_fp=force_fp)
# Add scale out inputs and weights
weights_dict[prefix + "M"] = scale.astype("uint8")
weights_dict[prefix + "S_out"] = s_out
# Return quantized weights and ouput scale
return weights_dict, output_scale
@staticmethod
def build_subgraph(op_type):
# Cast input, weights (and bias) into float.
t_names = ["X", "W", ""]
if "Biased" in op_type:
t_names[-1] = "bias"
nodes, t_names = cast_tensors_to(t_names)
# Flatten (optional)
if "Flatten" in op_type:
nodes.append(make_node("Flatten", inputs=t_names[:1], outputs=["Xflat"]))
t_names[0] = "Xflat"
# Gemm
nodes.append(make_node("Gemm", inputs=t_names, outputs=["Yi"], transB=1))
# Activation (optional)
if "ReLU" in op_type:
# Replace previous output as relu input
nodes[-1].output.__setitem__(0, nodes[-1].op_type)
nodes += get_activation_ops(nodes[-1].output[0], "Yi", "ReLUClipped" in op_type)
# Apply final scale (with saturation) (optional)
if "Scaled" in op_type:
shift_nodes, shift_t_names = cast_tensors_to(["Scale", "Shift"])
nodes += shift_nodes
nodes += get_scale_out_ops("Yi", "Yscaled", *shift_t_names, saturate=True)
nodes.append(make_node("Cast", ["Yscaled"], ["Y"], to=TP.INT8))
else:
nodes.append(make_node("Cast", ["Yi"], ["Y"], to=TP.INT32))
return nodes