Source code for quantizeml.layers.dense

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

__all__ = ["QuantizedDense"]

import tensorflow as tf
import keras

from .layers_base import (register_quantize_target, rescale_outputs, tensor_inputs,
                          neural_layer_init, register_aligned_inputs, QuantizedLayer)
from ..tensors import QTensor


[docs] @register_quantize_target(keras.layers.Dense) @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedDense(QuantizedLayer, keras.layers.Dense): """A Dense layer that operates on quantized inputs and weights Args: quant_config (dict, optional): the serialized quantization configuration. Defaults to None. """ @neural_layer_init(False) def __init__(self, *args, quant_config=None, **kwargs): # Limit buffer bitwidth to 27 for HW constraint self.quant_config['buffer_bitwidth'] = min(28, self.quant_config['buffer_bitwidth']) self.buffer_bitwidth = self.quant_config['buffer_bitwidth'] - 1 @tensor_inputs([QTensor, tf.Tensor]) @rescale_outputs def call(self, inputs): # Quantize the weights kernel = self.weight_quantizer(self.kernel) outputs = tf.matmul(inputs, kernel) if self.use_bias: # Quantize and align biases bias = self.bias_quantizer(self.bias, outputs) outputs = tf.add(outputs, bias) return outputs