Source code for quantizeml.layers.multi_inbounds

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

__all__ = ["Add", "QuantizedAdd", "QuantizedConcatenate"]

import keras
import tensorflow as tf

from .layers_base import (register_quantize_target, register_no_output_quantizer,
                          register_aligned_inputs, apply_buffer_bitwidth, QuantizedLayer)
from .quantizers import OutputQuantizer
from .recorders import TensorRecorder
from ..tensors import FixedPoint


[docs] @keras.saving.register_keras_serializable() class Add(keras.layers.Layer): """Wrapper class of `keras.layers.Add` that allows to average inputs. We only support a tuple of two inputs with the same shape. Args: average (bool, optional): if `True`, compute the average across all inputs. Defaults to `False`. activation (bool, optional): If `True`, apply an activation function after the addition. Defaults to `False`. """ def __init__(self, *args, average=False, activation=False, **kwargs): super().__init__(*args, **kwargs) self.average = average self.activation = activation def build(self, input_shape): if not isinstance(input_shape, (list, tuple)) or len(input_shape) != 2: raise ValueError(f"{self.__class__.__name__} expects two input tensors") super().build(input_shape) def call(self, inputs): a, b = inputs output = tf.add(a, b) if self.average: output /= 2 if self.activation: output = tf.nn.relu(output) return output def get_config(self): config = super().get_config() config["average"] = self.average config["activation"] = self.activation return config
# Note that keras.layers.Add is not registered as a quantized target because the class name 'Add' is # enough and shared between Keras and QuantizeML
[docs] @register_quantize_target(Add) @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedAdd(QuantizedLayer, Add): """Sums two inputs and quantize the output. The two inputs must be provided as a list or tuple of FixedPoint or Tensors. The outputs are quantized according to the specified quantization configuration. Args: quant_config (dict, optional): the serialized quantization configuration. Defaults to None. """ def __init__(self, *args, quant_config=None, **kwargs): super().__init__(*args, quant_config=quant_config, **kwargs) self.buffer_bitwidth = apply_buffer_bitwidth(self.quant_config, signed=True) out_quant_cfg = self.quant_config.get("output_quantizer", False) if out_quant_cfg: self.out_quantizer = OutputQuantizer( name="output_quantizer", **out_quant_cfg) else: self.out_quantizer = None # Add objects that will store the shift values. self.a_shift = TensorRecorder(self.name + "/a_shift") self.b_shift = TensorRecorder(self.name + "/b_shift") def _quantized_relu(self, inputs): # Inputs are always fixed points (as they come after an Add or after an output quantizer) # we can then represent the zero as a fixed point zero = FixedPoint(tf.constant(0.), inputs.value_bits, inputs.frac_bits) # ReLU inside the Add is always unbounded so we just remove negative values return tf.math.maximum(inputs, zero) def call(self, inputs): a, b = inputs if not (isinstance(a, FixedPoint) and isinstance(b, FixedPoint)): # If any of the inputs is not a FixedPoint, raise an error raise TypeError(f"QuantizedAdd only accepts FixedPoint\ inputs. Receives {(type(a), type(b))} inputs.") # Align intermediate inputs before adding them a, shift_ab = a.align(b, self.buffer_bitwidth) b, shift_ba = b.align(a, self.buffer_bitwidth) outputs = tf.add(a, b) if self.average: outputs = outputs >> 1 # Compute shifts self.a_shift(shift_ab) self.b_shift(shift_ba) # Rescale outputs if self.out_quantizer is not None: outputs = self.out_quantizer(outputs) # Apply activation if self.activation: outputs = self._quantized_relu(outputs) return outputs
[docs] @register_quantize_target(keras.layers.Concatenate) @register_no_output_quantizer @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedConcatenate(QuantizedLayer, keras.layers.Concatenate): """ A Concatenate layer that operates on quantized inputs """ def call(self, inputs): a, b = inputs if not (isinstance(a, FixedPoint) and isinstance(b, FixedPoint)): # If any of the inputs is not a FixedPoint, raise an error raise TypeError(f"QuantizedConcatenate only accepts FixedPoint\ inputs. Receives {(type(a), type(b))} inputs.") return tf.concat([a, b], axis=self.axis)