Source code for quantizeml.layers.reshaping.permute

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************

__all__ = ["QuantizedPermute"]

import tensorflow as tf
import keras

from ..layers_base import (register_quantize_target, tensor_inputs, register_no_output_quantizer,
                           register_aligned_inputs)
from ...tensors import FixedPoint
from ...debugging import assert_equal


[docs] @register_quantize_target(keras.layers.Permute) @register_no_output_quantizer @register_aligned_inputs @keras.saving.register_keras_serializable() class QuantizedPermute(keras.layers.Permute): """A Permute layer that operates on quantized inputs Note: Keras Permute layer simply wraps the Tensorflow transpose op. Args: dims (tuple of ints): Permutation pattern does not include the samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes the first and second dimensions of the input. """ @tensor_inputs([FixedPoint]) def call(self, inputs): if not inputs.per_tensor: # Different fractional-bits are defined for the last axis, so # it must be preserved during the transposition last_axis = tf.rank(inputs.values) - 1 assert_equal(self.dims[-1], last_axis) # Transpose only the values transposed_values = super().call(inputs.values) # Return a FixedPoint with the modified values return FixedPoint(transposed_values, inputs.value_bits, inputs.frac_bits)