#!/usr/bin/env python
# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
__all__ = ["QuantizedReshape"]
import tensorflow as tf
import keras
from ..layers_base import register_quantize_target, tensor_inputs, register_no_output_quantizer
from ...tensors import QTensor, FixedPoint
[docs]
@register_quantize_target(keras.layers.Reshape)
@register_no_output_quantizer
@keras.saving.register_keras_serializable()
class QuantizedReshape(keras.layers.Reshape):
"""A Reshape layer that operates on quantized inputs
Args:
target_shape (tuple of ints): Target shape, does not include the samples
dimension (batch size).
"""
@tensor_inputs([QTensor])
def call(self, inputs):
# Return a new reshaped QTensor
result = tf.reshape(inputs, (tf.shape(inputs)[0],) + self.target_shape)
if not tf.executing_eagerly():
# Set the static shape for the result since it might lost during
# array_ops reshape, eg, some `None` dim in the result could be
# inferred.
if isinstance(result, FixedPoint):
result.values.set_shape(self.compute_output_shape(inputs.shape))
else:
result.fp.values.set_shape(self.compute_output_shape(inputs.shape))
return result