Source code for quantizeml.onnx_support.layers.quantizers

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
__all__ = ["InputQuantizer", "Dequantizer", "get_input_quantizer"]

import numpy as np

from onnx.helper import make_node
from onnx import AttributeProto as AP

from .base_layer import OnnxLayer
from .layer_compatibility import check_node_link_to_input, check_node_has_one_initializer
from ..graph_tools import (TENSOR_SHAPE, value_info_to_tensor_shape, array_to_tp, get_field,
                           replace_field, get_variable, get_node)

from ..quantization.input_scale import input_zp_scale, needs_zp


def get_input_quantizer(nodes, graph):
    check_node_link_to_input(nodes[0], graph)

    perm = []
    transpose_node = get_node(nodes, "Transpose")
    if (transpose_node := get_node(nodes, "Transpose")) is not None:
        perm = get_field(transpose_node, "perm")

    input_ts = graph.input[0]
    input_unsigned = needs_zp(graph, nodes[-1].output[0])
    input_quantizer = InputQuantizer(name="quantize",
                                     input_tp=input_ts,
                                     input_signed=not input_unsigned,
                                     perm=perm)

    # Sets rescaling weights
    if (mul_node := get_node(nodes, "Mul")) is not None:
        check_node_has_one_initializer(mul_node, graph)
        input_quantizer.set_weight("input_scale", get_variable(mul_node.input[1], graph))
    if (add_node := get_node(nodes, "Add")) is not None:
        check_node_has_one_initializer(add_node, graph)
        input_quantizer.set_weight("offset", get_variable(add_node.input[1], graph))
    return input_quantizer


def _compute_quantization_parameters(r_scale, r_offset, out_tensor_range, signed):
    # Computing the ranges before the Rescale node (e.g. the model inputs)
    in_tensor_range = [(x - r_offset) / r_scale for x in out_tensor_range]
    in_tensor_range = (np.minimum(*in_tensor_range), np.maximum(*in_tensor_range))

    # Compute scale and zero point to quantize the inputs
    input_scale, input_zp = input_zp_scale(in_tensor_range, allow_zp=not signed)

    # Compute scale and output to dequantize the outputs
    output_scale, output_zp = input_zp_scale(out_tensor_range, allow_zp=not signed)

    # Check constraints
    err_msg = "Impossible to quantize inputs when folding rescale: "
    if not signed:
        # Compare if rescale is valid
        np.testing.assert_allclose(input_scale / output_scale,
                                   r_scale,
                                   atol=1e-3,
                                   err_msg=err_msg + "input/output scales ratio is not valid.")
    else:
        np.testing.assert_equal(r_offset, 0, err_msg + "offset must be zero when input is signed.")
    return (input_scale, input_zp), (output_scale, output_zp)


[docs] class InputQuantizer(OnnxLayer): """Intermediate representation of QuantizeLinear(), use to quantize the input. Args: input_tp (TensorProto): the input of the ONNX model. perm (list, optional): list representing the permutations of the rescale node. Defaults to []. input_signed (bool, optional): whether the input is signed. Defaults to False. name (str, optional): the node name. Defaults to ''. """ def __init__(self, input_tp, perm=[], input_signed=False, name=''): super().__init__("InputQuantizer", name=name, perm=perm) self.input_signed = input_signed self._input = [input_tp] # Declare weights self._add_weight("input_scale") self._add_weight("offset") def __build__(self, downscale=True): assert downscale, f"{self.name} ({self.base_name}) does not support 32bit output" input_ts = value_info_to_tensor_shape(self.input) assert input_ts.dtype == np.float32 # Add/initialize weights zp_dtype = "int8" if self.input_signed else "uint8" self._add_weight("zero_point", value=np.zeros(input_ts.shape[1]), dtype=zp_dtype) if self.weights["input_scale"].size == 0: self.set_weight("input_scale", np.ones((), dtype="float32")) if self.weights["offset"].size == 0: self.set_weight("offset", np.zeros((), dtype="float32")) # Update perm attribute input_ndim = len(input_ts.shape) perm = get_field(self, "perm") or list(range(input_ndim)) replace_field(self, "perm", perm) # Compute output shape output_shape = tuple(input_ts.shape[i] for i in perm) output_ts = TENSOR_SHAPE(output_shape, np.dtype(zp_dtype)) # Assert wrong weights format first_channel_expected_shape = (1,) + output_shape[1:2] + (1,) * (input_ndim - 2) if (self.weights["input_scale"].size != 1 and self.weights["input_scale"].shape != first_channel_expected_shape): raise ValueError(f"Unsupported 'input_scale' in {self.name} ({self.base_name}): " "it must be brodcastable in the channels dimension.") if (self.weights["offset"].size != 1 and self.weights["offset"].shape != first_channel_expected_shape): raise ValueError(f"Unsupported 'offset' in {self.name} ({self.base_name}): " "it must be brodcastable in the channels dimension.") return output_ts def __quantize__(self, out_tensor_range, force_fp=False): if force_fp: raise NotImplementedError("Force input scale to be a FP is not implemented yet.") # Calibration was done by axis=1. Therefore we can squeeze dimension in mean/offset rescale_scale = np.squeeze(self.weights["input_scale"]) rescale_offset = np.squeeze(self.weights["offset"]) # Computing quantization parameters input_scale_zp, output_scale_zp = _compute_quantization_parameters(rescale_scale, rescale_offset, out_tensor_range, self.input_signed) # Scale to set in weights is the reciprocal of ONNX calibrated one. input_scale = np.array(1 / input_scale_zp[0], dtype=np.float32) # Compute weights to serialize weights = {f"{self.name}_scale": input_scale, f"{self.name}_zp": input_scale_zp[1]} # Save zero point (used by next layer) self.set_weight("zero_point", output_scale_zp[1]) return weights, output_scale_zp[0] @staticmethod def build_subgraph(op_type): nodes = [make_node('Transpose', inputs=["X"], outputs=["Yi"])] nodes[-1].attribute.append(AP(name="perm", ref_attr_name="perm", type=AP.INTS)) nodes.append(make_node('QuantizeLinear', inputs=["Yi", "scale", "zp"], outputs=["Y"])) return nodes
[docs] class Dequantizer(OnnxLayer): """Intermediate representation of DequantizeLinear(), use to dequantize the input. Args: name (str, optional): the node name. Defaults to ''. """ def __init__(self, name=''): super().__init__("Dequantizer", name=name) def __build__(self, input_ts, downscale=True): assert input_ts.dtype in (np.int8, np.int32) # Compute output shape output_ts = TENSOR_SHAPE(input_ts.shape, np.dtype("float32")) return output_ts def quantize(self, qinput): # To keep homogenity with the other layers, this function is called 'quantize' # even though it does the opposite (dequantize): apply scale in the input integers. if self._output is None or self._input is None: # Build the layer if required self.build(qinput.output) # Scale to set in weights is the reciprocal of ONNX calibrated one. i_scale = qinput.weights["scale"] scale = np.array(1 / i_scale, dtype=np.float32) # Return ONNX node and weights weights = {f"{self.name}_scale": scale} inputs = [ts.name for ts in self._input] + list(weights) onnx_node = self.make_node(inputs, [self.output.name]) onnx_weights = array_to_tp(**weights) return onnx_node, onnx_weights @staticmethod def build_subgraph(op_type): return [make_node('DequantizeLinear', inputs=["X", 'scale'], outputs=["Y"])]