Source code for akida_models.detection.model_yolo

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2020 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
YOLO model definition for detection.
"""

import pickle

import numpy as np

from keras import Model

from cnn2snn import load_quantized_model, quantize

from ..layer_blocks import yolo_head_block
from ..imagenet.model_akidanet import akidanet_imagenet
from ..utils import fetch_file


[docs]def yolo_base(input_shape=(224, 224, 3), classes=1, nb_box=5, alpha=1.0, weight_quantization=0, activ_quantization=0, input_weight_quantization=None, input_scaling=(127.5, -1)): """ Instantiates the YOLOv2 architecture. Args: input_shape (tuple): input shape tuple classes (int): number of classes to classify images into nb_box (int): number of anchors boxes to use alpha (float): controls the width of the model weight_quantization (int): sets all weights in the model to have a particular quantization bitwidth except for the weights in the first layer. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. activ_quantization: sets all activations in the model to have a particular activation quantization bitwidth. * '0' implements floating point 32-bit activations. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_weight_quantization: sets weight quantization in the first layer. Defaults to weight_quantization value. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_scaling (tuple, optional): scale factor and offset to apply to inputs. Defaults to (127.5, -1). Note that following Akida convention, the scale factor is a number used as a divider. Returns: keras.Model: a Keras Model instance. """ # Overrides input weight quantization if None if input_weight_quantization is None: input_weight_quantization = weight_quantization # Create an AkidaNet network without top layers base_model = akidanet_imagenet( input_shape=input_shape, alpha=alpha, include_top=False, weight_quantization=weight_quantization, activ_quantization=activ_quantization, input_weight_quantization=input_weight_quantization, input_scaling=input_scaling) # Add YOLO top layers to the base model input_shape = base_model.input_shape x = yolo_head_block(base_model.layers[-1].output, num_boxes=nb_box, classes=classes) model = Model(inputs=base_model.input, outputs=x, name='yolo_base') # Initialize detection layer weights layer = model.get_layer("detection_layer") detection_weights = layer.get_weights() mu, sigma = 0, 0.1 grid_size = model.output_shape[1:3] grid_area = grid_size[0] * grid_size[1] dw_kernel = np.random.normal(mu, sigma, size=detection_weights[0].shape) / grid_area pw_kernel = np.random.normal(mu, sigma, size=detection_weights[1].shape) / grid_area bias = np.random.normal(mu, sigma, size=detection_weights[2].shape) / grid_area layer.set_weights([dw_kernel, pw_kernel, bias]) if ((weight_quantization != 0) or (activ_quantization != 0) or (input_weight_quantization != 0)): return quantize(model, weight_quantization, activ_quantization, input_weight_quantization) return model
[docs]def yolo_widerface_pretrained(): """ Helper method to retrieve a `yolo_base` model that was trained on WiderFace dataset and the anchors that are needed to interpet the model output. Returns: keras.Model, list: a Keras Model instance and a list of anchors. """ anchors_name = 'widerface_anchors.pkl' anchors_path = fetch_file( 'http://data.brainchip.com/dataset-mirror/widerface/' + anchors_name, fname=anchors_name, file_hash='325f92336a310d83fed71765436ee343bf3e39cbc12fd099d30677761aee9376', cache_subdir='datasets/widerface') with open(anchors_path, 'rb') as handle: anchors = pickle.load(handle) model_name = 'yolo_akidanet_widerface_iq8_wq4_aq4.h5' file_hash = 'd55744cbfbbe1131aa26015f38d99f1df7026347bae8f66683259e366e7b6e03' model_path = fetch_file('http://data.brainchip.com/models/yolo/' + model_name, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_quantized_model(model_path), anchors
[docs]def yolo_voc_pretrained(): """ Helper method to retrieve a `yolo_base` model that was trained on PASCAL VOC2012 dataset for 'person' and 'car' classes only, and the anchors that are needed to interpet the model output. Returns: keras.Model, list: a Keras Model instance and a list of anchors. """ anchors_name = 'voc_anchors.pkl' anchors_path = fetch_file( 'http://data.brainchip.com/dataset-mirror/voc/' + anchors_name, fname=anchors_name, file_hash='b1fe1ed12691e100646cf52b1320f05abd17b2f546d3e12cdee87758cc9ed0ba', cache_subdir='datasets/voc') with open(anchors_path, 'rb') as handle: anchors = pickle.load(handle) model_name = 'yolo_akidanet_voc_iq8_wq4_aq4.h5' file_hash = 'e65b0b6bd4b08c2796c3bbea89343748195e29e240ce28e70489c53d06ca69d9' model_path = fetch_file('http://data.brainchip.com/models/yolo/' + model_name, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_quantized_model(model_path), anchors