#!/usr/bin/env python
# ******************************************************************************
# Copyright 2020 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
YOLO model definition for detection.
"""
import pickle
import numpy as np
from keras import Model
from cnn2snn import load_quantized_model, quantize
from ..layer_blocks import yolo_head_block
from ..imagenet.model_akidanet import akidanet_imagenet
from ..utils import fetch_file
[docs]def yolo_base(input_shape=(224, 224, 3),
classes=1,
nb_box=5,
alpha=1.0,
weight_quantization=0,
activ_quantization=0,
input_weight_quantization=None,
input_scaling=(127.5, -1)):
""" Instantiates the YOLOv2 architecture.
Args:
input_shape (tuple): input shape tuple
classes (int): number of classes to classify images into
nb_box (int): number of anchors boxes to use
alpha (float): controls the width of the model
weight_quantization (int): sets all weights in the model to have
a particular quantization bitwidth except for the weights in the
first layer.
* '0' implements floating point 32-bit weights.
* '2' through '8' implements n-bit weights where n is from 2-8 bits.
activ_quantization: sets all activations in the model to have a
particular activation quantization bitwidth.
* '0' implements floating point 32-bit activations.
* '2' through '8' implements n-bit weights where n is from 2-8 bits.
input_weight_quantization: sets weight quantization in the first layer.
Defaults to weight_quantization value.
* '0' implements floating point 32-bit weights.
* '2' through '8' implements n-bit weights where n is from 2-8 bits.
input_scaling (tuple, optional): scale factor and offset to apply to
inputs. Defaults to (127.5, -1). Note that following Akida
convention, the scale factor is a number used as a divider.
Returns:
keras.Model: a Keras Model instance.
"""
# Overrides input weight quantization if None
if input_weight_quantization is None:
input_weight_quantization = weight_quantization
# Create an AkidaNet network without top layers
base_model = akidanet_imagenet(
input_shape=input_shape,
alpha=alpha,
include_top=False,
weight_quantization=weight_quantization,
activ_quantization=activ_quantization,
input_weight_quantization=input_weight_quantization,
input_scaling=input_scaling)
# Add YOLO top layers to the base model
input_shape = base_model.input_shape
x = yolo_head_block(base_model.layers[-1].output, num_boxes=nb_box, classes=classes)
model = Model(inputs=base_model.input, outputs=x, name='yolo_base')
# Initialize detection layer weights
layer = model.get_layer("detection_layer")
detection_weights = layer.get_weights()
mu, sigma = 0, 0.1
grid_size = model.output_shape[1:3]
grid_area = grid_size[0] * grid_size[1]
dw_kernel = np.random.normal(mu, sigma,
size=detection_weights[0].shape) / grid_area
pw_kernel = np.random.normal(mu, sigma,
size=detection_weights[1].shape) / grid_area
bias = np.random.normal(mu, sigma,
size=detection_weights[2].shape) / grid_area
layer.set_weights([dw_kernel, pw_kernel, bias])
if ((weight_quantization != 0) or (activ_quantization != 0) or
(input_weight_quantization != 0)):
return quantize(model, weight_quantization, activ_quantization,
input_weight_quantization)
return model
[docs]def yolo_widerface_pretrained():
"""
Helper method to retrieve a `yolo_base` model that was trained on WiderFace
dataset and the anchors that are needed to interpet the model output.
Returns:
keras.Model, list: a Keras Model instance and a list of anchors.
"""
anchors_name = 'widerface_anchors.pkl'
anchors_path = fetch_file(
'http://data.brainchip.com/dataset-mirror/widerface/' + anchors_name,
fname=anchors_name,
file_hash='325f92336a310d83fed71765436ee343bf3e39cbc12fd099d30677761aee9376',
cache_subdir='datasets/widerface')
with open(anchors_path, 'rb') as handle:
anchors = pickle.load(handle)
model_name = 'yolo_akidanet_widerface_iq8_wq4_aq4.h5'
file_hash = 'd55744cbfbbe1131aa26015f38d99f1df7026347bae8f66683259e366e7b6e03'
model_path = fetch_file('http://data.brainchip.com/models/yolo/' + model_name,
fname=model_name,
file_hash=file_hash,
cache_subdir='models')
return load_quantized_model(model_path), anchors
[docs]def yolo_voc_pretrained():
"""
Helper method to retrieve a `yolo_base` model that was trained on PASCAL
VOC2012 dataset for 'person' and 'car' classes only, and the anchors that
are needed to interpet the model output.
Returns:
keras.Model, list: a Keras Model instance and a list of anchors.
"""
anchors_name = 'voc_anchors.pkl'
anchors_path = fetch_file(
'http://data.brainchip.com/dataset-mirror/voc/' + anchors_name,
fname=anchors_name,
file_hash='b1fe1ed12691e100646cf52b1320f05abd17b2f546d3e12cdee87758cc9ed0ba',
cache_subdir='datasets/voc')
with open(anchors_path, 'rb') as handle:
anchors = pickle.load(handle)
model_name = 'yolo_akidanet_voc_iq8_wq4_aq4.h5'
file_hash = 'e65b0b6bd4b08c2796c3bbea89343748195e29e240ce28e70489c53d06ca69d9'
model_path = fetch_file('http://data.brainchip.com/models/yolo/' + model_name,
fname=model_name,
file_hash=file_hash,
cache_subdir='models')
return load_quantized_model(model_path), anchors