Source code for akida_models.imagenet.model_mobilenet

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2020 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
MobileNet model definition for ImageNet classification.

MobileNet V1 is a general architecture and can be used for multiple use cases.

This specific version includes parameter options to generate a mobilenet version
compatible for Akida with:
    - overall architecture compatible with Akida (conv stride 2 replaced with
     max pool),
    - options to quantize weights and activations,
    - different initialization options.
"""

from keras import Model, regularizers
from keras.layers import (Input, Reshape, Dropout, Activation, Rescaling)

from cnn2snn import load_quantized_model, quantize

from .imagenet_utils import obtain_input_shape
from ..layer_blocks import conv_block, separable_conv_block
from ..utils import fetch_file

BASE_WEIGHT_PATH = 'http://data.brainchip.com/models/mobilenet/'


[docs]def mobilenet_imagenet(input_shape=None, alpha=1.0, dropout=1e-3, include_top=True, pooling=None, classes=1000, use_stride2=False, weight_quantization=0, activ_quantization=0, input_weight_quantization=None, input_scaling=(128, -1)): """Instantiates the MobileNet architecture. Args: input_shape (tuple, optional): shape tuple. Defaults to None. alpha (float, optional): controls the width of the model. Defaults to 1.0. * If `alpha` < 1.0, proportionally decreases the number of filters in each layer. * If `alpha` > 1.0, proportionally increases the number of filters in each layer. * If `alpha` = 1, default number of filters from the paper are used at each layer. dropout (float, optional): dropout rate. Defaults to 1e-3. include_top (bool, optional): whether to include the fully-connected layer at the top of the model. Defaults to True. pooling (str, optional): optional pooling mode for feature extraction when `include_top` is `False`. Defaults to None. * `None` means that the output of the model will be the 4D tensor output of the last convolutional block. * `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. classes (int, optional): optional number of classes to classify images into, only to be specified if `include_top` is `True`. Defaults to 1000. use_stride2 (bool, optional): replace max pooling operations by stride 2 convolutions in layers separable 2, 4, 6 and 12. Defaults to False. weight_quantization (int, optional): sets all weights in the model to have a particular quantization bitwidth except for the weights in the first layer. Defaults to 0. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. activ_quantization (int, optional): sets all activations in the model to have a particular activation quantization bitwidth. Defaults to 0. * '0' implements floating point 32-bit activations. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_weight_quantization (int, optional): sets weight quantization in the first layer. Defaults to weight_quantization value. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_scaling (tuple, optional): scale factor and offset to apply to inputs. Defaults to (128, -1). Note that following Akida convention, the scale factor is an integer used as a divider. Returns: keras.Model: a Keras model for MobileNet/ImageNet. Raises: ValueError: in case of invalid input shape. """ # check if overrides have been provided and override if input_weight_quantization is None: input_weight_quantization = weight_quantization # Define weight regularization, will apply to the first convolutional layer # and to all pointwise weights of separable convolutional layers. weight_regularizer = regularizers.l2(4e-5) # Define stride 2 or max pooling if use_stride2: sep_conv_pooling = None strides = 2 else: sep_conv_pooling = 'max' strides = 1 # Determine proper input shape and default size. if input_shape is None: default_size = 224 else: rows = input_shape[0] cols = input_shape[1] if rows == cols and rows in [128, 160, 192, 224]: default_size = rows else: default_size = 224 input_shape = obtain_input_shape(input_shape, default_size=default_size, min_size=32, include_top=include_top) rows = input_shape[0] cols = input_shape[1] img_input = Input(shape=input_shape, name="input") if input_scaling is None: x = img_input else: scale, offset = input_scaling x = Rescaling(1. / scale, offset, name="rescaling")(img_input) x = conv_block(x, filters=int(32 * alpha), name='conv_0', kernel_size=(3, 3), padding='same', use_bias=False, strides=2, add_batchnorm=True, add_activation=True, kernel_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(64 * alpha), name='separable_1', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(128 * alpha), name='separable_2', kernel_size=(3, 3), padding='same', pooling=sep_conv_pooling, strides=strides, use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(128 * alpha), name='separable_3', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(256 * alpha), name='separable_4', kernel_size=(3, 3), padding='same', pooling=sep_conv_pooling, strides=strides, use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(256 * alpha), name='separable_5', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_6', kernel_size=(3, 3), padding='same', pooling=sep_conv_pooling, strides=strides, use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_7', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_8', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_9', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_10', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(512 * alpha), name='separable_11', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) x = separable_conv_block(x, filters=int(1024 * alpha), name='separable_12', kernel_size=(3, 3), padding='same', pooling=sep_conv_pooling, strides=strides, use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) # Last separable layer with global pooling layer_pooling = 'global_avg' if include_top or pooling == 'avg' else None x = separable_conv_block(x, filters=int(1024 * alpha), name='separable_13', kernel_size=(3, 3), padding='same', pooling=layer_pooling, use_bias=False, add_batchnorm=True, add_activation=True, pointwise_regularizer=weight_regularizer) if include_top: shape = (1, 1, int(1024 * alpha)) x = Reshape(shape, name='reshape_1')(x) x = Dropout(dropout, name='dropout')(x) x = separable_conv_block(x, filters=classes, name='separable_14', kernel_size=(3, 3), padding='same', use_bias=False, add_batchnorm=False, add_activation=False, pointwise_regularizer=weight_regularizer) act_function = 'softmax' if classes > 1 else 'sigmoid' x = Activation(act_function, name=f'act_{act_function}')(x) x = Reshape((classes,), name='reshape_2')(x) # Create model. model = Model(img_input, x, name='mobilenet_%0.2f_%s_%s' % (alpha, rows, classes)) if ((weight_quantization != 0) or (activ_quantization != 0) or (input_weight_quantization != 0)): return quantize(model, weight_quantization, activ_quantization, input_weight_quantization) return model
[docs]def mobilenet_imagenet_pretrained(alpha=1.0): """ Helper method to retrieve a `mobilenet_imagenet` model that was trained on ImageNet dataset. Args: alpha (float): width of the model. Returns: keras.Model: a Keras Model instance. """ if alpha == 1.0: model_name = 'mobilenet_imagenet_224_iq8_wq4_aq4.h5' file_hash = '242a5d6e155f9677e4a295d6c0b092061ab442bd2c51898663d818b706fc2c34' elif alpha == 0.5: model_name = 'mobilenet_imagenet_224_alpha_50_iq8_wq4_aq4.h5' file_hash = 'aa8fec3c21455dbb16dc86063ea07fcba792dcdaf8293c58db42dc379c78afc1' elif alpha == 0.25: model_name = 'mobilenet_imagenet_224_alpha_25_iq8_wq4_aq4.h5' file_hash = '2765b8b24e880f593dbb18d73e8750e51a3dfc8f38f2978d9d6679e3f970466a' else: raise ValueError( f"Requested model with alpha={alpha} is not available.") model_path = fetch_file(BASE_WEIGHT_PATH + model_name, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_quantized_model(model_path)