Source code for akida_models.imagenet.model_vgg

#!/usr/bin/env python
# ******************************************************************************
# Copyright 2021 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
VGG model definition for ImageNet classification.
"""

from keras import Model, regularizers
from keras.layers import (Input, Activation, Dropout, Flatten, Rescaling)

from cnn2snn import quantize, load_quantized_model

from ..layer_blocks import conv_block, dense_block
from ..utils import fetch_file

BASE_WEIGHT_PATH = 'http://data.brainchip.com/models/vgg/'


[docs]def vgg_imagenet(input_shape=(224, 224, 3), classes=1000, include_top=True, pooling=None, weight_quantization=0, activ_quantization=0, input_weight_quantization=None, input_scaling=(128, -1)): """Instantiates a VGG11 architecture with reduced number of filters in convolutional layers (i.e. a quarter of the filters of the original implementation of https://arxiv.org/pdf/1409.1556.pdf). Args: input_shape (tuple, optional): input shape tuple. Defaults to (224, 224, 3). classes (int, optional): optional number of classes to classify images into. Defaults to 1000. include_top (bool, optional): whether to include the classification layers at the top of the model. Defaults to True. pooling (str, optional): Optional pooling mode for feature extraction when `include_top` is `False`. Defaults to None. * `None` means that the output of the model will be the 4D tensor output of the last convolutional block. * `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. weight_quantization (int, optional): sets all weights in the model to have a particular quantization bitwidth except for the weights in the first layer. Defaults to 0. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. activ_quantization (int, optional): sets all activations in the model to have a particular activation quantization bitwidth. Defaults to 0. * '0' implements floating point 32-bit activations. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_weight_quantization(int, optional): sets weight quantization in the first layer. Defaults to weight_quantization value. * '0' implements floating point 32-bit weights. * '2' through '8' implements n-bit weights where n is from 2-8 bits. input_scaling (tuple, optional): scale factor and offset to apply to inputs. Defaults to (128, -1). Note that following Akida convention, the scale factor is an integer used as a divider. Returns: keras.Model: a Keras model for VGG/ImageNet """ # check if overrides have been provided and override if input_weight_quantization is None: input_weight_quantization = weight_quantization # Define weight regularization weight_regularizer = regularizers.l2(4e-5) img_input = Input(shape=input_shape, name="input") if input_scaling is None: x = img_input else: scale, offset = input_scaling x = Rescaling(1. / scale, offset, name="rescaling")(img_input) # Block 1 x = conv_block(x, filters=16, name='block_1/conv_1', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True, pooling='max', pool_size=(2, 2)) # Block 2 x = conv_block(x, filters=32, name='block_2/conv_1', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True, pooling='max', pool_size=(2, 2)) # Block 3 x = conv_block(x, filters=64, name='block_3/conv_1', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True) x = conv_block(x, filters=64, name='block_3/conv_2', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True, pooling='max', pool_size=(2, 2)) # Block 4 x = conv_block(x, filters=128, name='block_4/conv_1', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True) x = conv_block(x, filters=128, name='block_4/conv_2', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True, pooling='max', pool_size=(2, 2)) # Block 5 x = conv_block(x, filters=128, name='block_5/conv_1', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True) layer_pooling = 'global_avg' if pooling == 'avg' else 'max' x = conv_block(x, filters=128, name='block_5/conv_2', kernel_size=(3, 3), padding='same', kernel_regularizer=weight_regularizer, add_batchnorm=True, add_activation=True, pooling=layer_pooling, pool_size=(2, 2)) if include_top: # Classification block x = Flatten(name='flatten')(x) x = dense_block(x, units=4096, name='fc_1', add_batchnorm=True, add_activation=True) x = Dropout(0.5, name='dropout_1')(x) x = dense_block(x, units=4096, name='fc_2', add_batchnorm=True, add_activation=True) x = Dropout(0.5, name='dropout_2')(x) x = dense_block(x, units=classes, name='predictions', add_batchnorm=False, add_activation=False) act_function = 'softmax' if classes > 1 else 'sigmoid' x = Activation(act_function, name=f'act_{act_function}')(x) # Create model model = Model(img_input, x, name='vgg11_%s_%s' % (input_shape[0], classes)) if ((weight_quantization != 0) or (activ_quantization != 0) or (input_weight_quantization != 0)): return quantize(model, weight_quantization, activ_quantization, input_weight_quantization) return model
[docs]def vgg_imagenet_pretrained(): """ Helper method to retrieve a `vgg_imagenet` model that was trained on ImageNet dataset. Returns: keras.Model: a Keras Model instance. """ model_name = 'vgg11_imagenet_224_iq8_wq4_aq4.h5' file_hash = '40fe5e7fdf083604d3bbe8eba314a832d1dc1f218a743bef244ff6ce2f3c9bfe' model_path = fetch_file(BASE_WEIGHT_PATH + model_name, fname=model_name, file_hash=file_hash, cache_subdir='models') return load_quantized_model(model_path)