#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
This module defines a custom loss function for CenterNet training
"""
from keras import backend as K
import tensorflow as tf
[docs]class CenternetLoss():
""" Computes CenterNet loss from a model raw output.
Args:
alpha (float, optional): alpha parameter in heatmap loss. Defaults to 2.0.
gamma (float, optional): gamma parameter in heatmap loss. Defaults to 4.0.
eps (float, optional): epsilon parameter in heatmap loss. Defaults to 1e-12.
heatmap_loss_weight (float, optional): heatmap loss weight. Defaults to 1.0.
wh_loss_weight (float, optional): location loss weight. Defaults to 0.1.
offset_loss_weight (float, optional): offset loss weight. Defaults to 1.0.
"""
def __init__(self,
alpha=2.0,
gamma=4.0,
eps=1e-12,
heatmap_loss_weight=1.0,
wh_loss_weight=0.1,
offset_loss_weight=1.0):
# Parameters for the gaussian focal loss for the heatmap branch
self._alpha = alpha
self._gamma = gamma
self._eps = eps
# Loss weight parameters
self.heatmap_loss_weight = heatmap_loss_weight
self.wh_loss_weight = wh_loss_weight
self.offset_loss_weight = offset_loss_weight
def _transform_netout(self, y_pred_raw):
"""Transforms the output of the network:
- cast to float32
- extracts the // wh, offset and heatmap from fused map if necessary
- applies sigmoid to the heatmap prediction
Args:
y_pred_raw (tf.Tensor): raw network predictions.
Returns:
tuple of tf.Tensor: Predictions transformed on xy, wh and offset values.
"""
y_pred_raw = tf.cast(y_pred_raw, dtype=tf.float32)
y_pred_xy = K.sigmoid(y_pred_raw[..., :-4])
y_pred_wh = y_pred_raw[..., -4:-2]
y_pred_offset = y_pred_raw[..., -2:]
return y_pred_xy, y_pred_wh, y_pred_offset
def _get_targets(self, y_true):
"""Extract ground truth for each branch and compute avg_factor, wh_offset_target_weight
here so we don't have to pass it through the whole model
Args:
y_true (tf.Tensor): ground truth.
Returns:
tuple of tf.Tensor: labels in xy, wh, offset, avg_factor and wh_offset format.
"""
target_xy = y_true[..., :-4]
target_wh = y_true[..., -4:-2]
target_offset = y_true[..., -2:]
# Extract the average factor counts the number of targets to be learned
# max(1, center_heatmap_target.eq(1).sum())
tmp = tf.equal(tf.constant(1.0, dtype=y_true.dtype), target_xy)
tmp = tf.cast(tmp, dtype=tf.float32)
tmp = tf.reduce_sum(tmp)
avg_factor = tf.reduce_max([tf.constant(1.0, dtype=tmp.dtype), tmp])
# Extract the wh offset target weight
# wh_offset_target_weight[batch_id, :, cty_int, ctx_int] = 1
# => 1 anywhere there is a target offset and wh
tmp = tf.equal(tf.constant(0, dtype=y_true.dtype), target_offset)
tmp = tf.logical_not(tmp)
wh_offset_target_weight = tf.cast(tmp, dtype=tf.float32)
return target_xy, target_wh, target_offset, avg_factor, wh_offset_target_weight
def heatmap_loss(self, y_true, y_pred, avg_factor):
"""Implements `Gaussian Focal loss <https://arxiv.org/abs/1708.02002>`_
for targets in gaussian distribution.
Original source: mmdetection/losses/gaussian_focal_loss
Args:
y_true (tf.Tensor): tensor of true labels.
y_pred (tf.Tensor): tensor of predicted labels.
avg_factor (tf.Tensor): average factor.
Returns:
tf.Tensor: Heatmap loss
"""
# Compute the loss
pos_weights = tf.cast(tf.equal(y_true, 1.0), dtype=tf.float32)
neg_weights = tf.math.pow((1 - y_true), self._gamma)
pos_loss = -tf.math.log(y_pred + self._eps) * \
tf.math.pow((1 - y_pred), self._alpha) * pos_weights
neg_loss = -tf.math.log(1 - y_pred + self._eps) * \
tf.math.pow(y_pred, self._alpha) * neg_weights
loss = pos_loss + neg_loss
# Compute the average across the matrix
loss = tf.reduce_sum(loss) / avg_factor
return loss
def l1_loss(self, y_true, y_pred, avg_factor, weights=None):
"""L1 loss, used in location loss
Args:
y_true (tf.Tensor): tensor of true labels.
y_pred (tf.Tensor): tensor of predicted labels.
avg_factor (tf.Tensor): average factor.
weights (tf.Tensor, optional): factor to multiply the loss. Defaults to None.
Returns:
tf.Tensor: L1 loss
"""
difference = y_true - y_pred
loss = tf.abs(difference)
if weights is not None:
loss *= weights
loss = tf.reduce_sum(loss) / avg_factor
return loss
def __call__(self, y_true, y_pred_raw):
# Get the avg factor and wh / offset weights
(target_xy, target_wh, target_offset, avg_factor,
wh_offset_target_weight) = self._get_targets(y_true)
# Extract the 3 // branches + apply sigmoid
y_pred_xy, y_pred_wh, y_pred_offset = self._transform_netout(y_pred_raw)
# Heatmap loss
center_heatmap_loss = self.heatmap_loss(target_xy, y_pred_xy, avg_factor)
center_heatmap_loss *= self.heatmap_loss_weight
# Wh loss
wh_loss = self.l1_loss(target_wh, y_pred_wh, avg_factor * 2, wh_offset_target_weight)
wh_loss *= self.wh_loss_weight
# Offset loss
offset_loss = self.l1_loss(target_offset, y_pred_offset, avg_factor * 2,
wh_offset_target_weight)
offset_loss *= self.offset_loss_weight
loss = center_heatmap_loss + wh_loss + offset_loss
return loss