Source code for akida_models.extract
#!/usr/bin/env python
# ******************************************************************************
# Copyright 2023 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""Sample extraction from datasets"""
import numpy as np
import tensorflow as tf
from typing import Iterable
import itertools
[docs]def extract_samples(out_file, dataset, nb_samples=1024):
"""Extracts samples from dataset and save them to a npz file.
Args:
out_file (str): name of output file
dataset (numpy.ndarray or tf.data.Dataset): dataset for extract samples
nb_samples (int, optional): number of samples. Defaults to 1024.
"""
# The expected number of samples
if isinstance(dataset, np.ndarray):
if len(dataset) < nb_samples:
raise ValueError("Not enough samples in the dataset.")
samples_x = dataset[0:nb_samples].astype('float32')
elif isinstance(dataset, tf.data.Dataset):
dataset.unbatch().take(nb_samples)
samples_x, _ = next(dataset.as_numpy_iterator())
elif isinstance(dataset, Iterable):
dataset = itertools.islice(dataset, nb_samples)
# drop labels
xs, _ = itertools.tee(dataset)
xs = (x[0] for x in xs)
samples_x = next(xs)
else:
raise ValueError("Dataset format not supported.")
samples = {"data": samples_x}
np.savez(out_file, **samples)
print(f"Samples saved as {out_file}")