# ******************************************************************************
# Copyright 2022 Brainchip Holdings Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
"""
Preprocessing tools for ImageNet dataset.
"""
import numpy as np
import keras
import tensorflow as tf
import tensorflow_addons as tfa
from .imagenet_labels2names import imagenet_labels
class RandomColorJitter(keras.layers.Layer):
"""RandomColorJitter class.
Randomly adds color jitter to an image. Color jitter means to add random brightness, contrast,
saturation, and hue to an image. There is a 80% chance that an image will be randomly
color-jittered. Taken on https://keras.io/examples/vision/barlow_twins/
Args:
proba(float, optional): Probability of applying the color jitter. Defaults to 0.8.
"""
def __init__(self, *args, proba=0.8, **kwargs):
super().__init__(*args, **kwargs)
self.proba = proba
@tf.function
def call(self, image):
def _color_jitter(image):
image = tf.image.random_brightness(image, 0.8)
image = tf.image.random_contrast(image, 0.4, 1.6)
image = tf.image.random_saturation(image, 0.4, 1.6)
image = tf.image.random_hue(image, 0.2)
return image
return tf.cond(
tf.random.uniform([]) < self.proba, lambda: _color_jitter(image), lambda: image)
class ThreeAugment(keras.layers.Layer):
"""Define a simple data augmentation pipeline of three augmentations, following the explaining
in the paper: https://arxiv.org/abs/2204.07118. For that, this augmentation choses one of:
- GrayScale: This favors color invariance and give more focus on shapes.
- Solarization: This adds strong noise on the colour to be more robust to the variation
of colour intensity and so focus more on shape
- Gaussian Blur: In order to slightly alter details in the image.
"""
@tf.function
def call(self, image):
def _to_gray():
return tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
def _solarize():
# Taken of: https://keras.io/examples/vision/barlow_twins/
return tf.where(image < 10, image, 255 - image)
def _gaussian_blur():
# Taken of: https://keras.io/examples/vision/barlow_twins/
s = np.random.random()
return tfa.image.gaussian_filter2d(image=image, sigma=s)
proba = tf.random.uniform([])
cases = [(proba < 1 / 3, _to_gray), (proba < 2 / 3, _solarize)]
return tf.case(cases, default=_gaussian_blur, name='3-Augment', exclusive=False)
DATA_AUGMENTATION = keras.Sequential([RandomColorJitter(), ThreeAugment()])
[docs]@tf.function
def preprocess_image(image, image_size, training=False, data_aug=None):
""" ImageNet data preprocessing.
Preprocessing includes cropping, and resizing for both training and
validation images. Training preprocessing introduces some random distortion
of the image to improve accuracy.
Args:
image (tf.Tensor): input image as a 3-D tensor
image_size (int): desired image size
training (bool, optional): True for training preprocessing, False for
validation and inference. Defaults to False.
data_aug (keras.Sequential, optional): data augmentation. Defaults to None.
Returns:
:obj:`tensorflow.Tensor`: preprocessed image
"""
shape = tf.shape(image)
if training:
# For training: crop, flip and resize
bbox_begin, bbox_size, _ = tf.image.sample_distorted_bounding_box(
shape,
tf.zeros([0, 0, 4], tf.float32), # force using whole image
use_image_if_no_bounding_boxes=True,
min_object_covered=0.1,
aspect_ratio_range=[0.75, 1.33],
area_range=[0.05, 1.0],
max_attempts=100)
image = tf.slice(image, bbox_begin, bbox_size)
image = tf.image.resize(image, [image_size, image_size])
# Make all data augmentation after resize to decrease computational cost
image = tf.image.random_flip_left_right(image)
if data_aug is not None:
image = data_aug(image)
else:
# For validation/inference: aspect preserving resize and central crop
height = tf.cast(shape[0], tf.float32)
width = tf.cast(shape[1], tf.float32)
# Scale image before cropping, keeping aspect ratio
resize_min = np.round(image_size * 1.143).astype(np.float32)
scale_ratio = resize_min / tf.minimum(height, width)
# Convert back to int for TF ops
new_height = tf.cast(height * scale_ratio, tf.int32)
new_width = tf.cast(width * scale_ratio, tf.int32)
image = tf.image.resize(image, [new_height, new_width])
# Second: central crop to desired image_size
image = tf.image.resize_with_crop_or_pad(image, image_size, image_size)
return tf.cast(image, tf.float32)
[docs]def index_to_label(index):
""" Function to get an ImageNet label from an index.
Args:
index: between 0 and 999
Returns:
str: a string of comma separated labels
"""
return imagenet_labels[index]